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1. If a(t), b(t), and c(t) are functions of t, verify the following results:

d

dt
[a · (b× c)] = a ·

(
b× dc

dt

)
+ a ·

(
db

dt
× c
)

+
da

dt
· (b× c) (1)

d

dt
[a× (b× c)] = a×

(
b× dc

dt

)
+ a×

(
db

dt
× c
)

+
da

dt
× (b× c) (2)

[Hint: Compute b× c first.]

Solution: Really just an application of the product rule, which works just fine with vector and
scalar products:

d

dt
(u · v) =

du

dt
· v + u · dv

dt
(3)

d

dt
(u× v) =

du

dt
× v + u× dv

dt
(4)

The generalization to a triple product is straightforward, and the desired result follows immediately.

2. Find the angle between a body diagonal of a cube and any one of its face diagonals. [Hint:
Choose a unit cube with one corner at the origin and the opposite corner at point (1,1,1). Write
down the vectors for the two diagonals and use the scalar product.]

Solution: The body diagonal is the vector b = (1, 1, 1). One face diagonal would be f = (1, 1, 0),
it doesn’t matter which one we pick. Their scalar product is

b · f = (1, 1, 1) · (1, 1, 0) = 2 = bf cos θ =
√

3
√

2 cos θ (5)

cos θ =
2√
2
√

3
=

√
2

3
θ ≈ 35.3◦ (6)

3. (a) Prove that if v(t) is any vector that depends on time but which has constant magnitude,
then v̇(t) is orthogonal to v(t). (b) Prove the converse that if v̇(t) is orthogonal to v(t), then |v(t)|
is constant. [Hint: Consider the derivative of v2.] This is a very handy result. It explains why, in
two-dimensional polars, dr/dt has to be in the direction of ϕ̂ and vice versa. It also shows that the



speed of a charged particle in a magnetic field is constant, since the acceleration is perpendicular
to the velocity.

Solution: (a) If |v| is constant, then so is v2, and its time derivative must be zero.

dv2

dt
=

d

dt
(v · v) =

dv

dt
· v + v · dv

dt
= v̇ · v + v · v̇ = 0 (7)

Since the dot product is commutative, a · b = b · a,

v̇ · v + v · v̇ = 2v̇ · v = 0 (8)

=⇒ v̇ · v = 0 (9)

Hence, v and v̇ must be orthogonal.

(b) Just work backwards. We know v · v̇ = 0. Proceeding,

v · v̇ = 0 (10)

2v · v̇ = 0 (11)

2v · v̇ = v̇ · v + v · v̇ = 0 (12)

d

dt
(v · v) =

dv2

dt
= v̇ · v + v · v̇ = 0 (13)

=⇒ v2 = const (14)

Since v2 = |v|2 is constant, clearly |v| is constant.

4. When a baseball flies through the air, the ratio fquad/flin of the quadratic to the linear drag
force is given by

fquad
flin

=
γD

β
v =

(
1.6× 103 s/m2

)
Dv (15)

Given that a baseball has a diameter of about 7 cm, find the approximate speed v at which the two
drag forces are equally important. For what range of speeds is it safe to treat the drag force as
purely quadratic? Under normal conditions is it a good approximation to ignore the linear term?
Answer the same questions for a golf ball of diameter 4.3 cm.

Solution: For fquad = flin with D=7 cm, we have v=0.9 cm/s (about 0.15mph). Clearly the linear
drag is negligible at any reasonable everyday speed.

A golf ball is roughly 1.5 times smaller than a baseball, meaning its critical speed will be about
1.5 times larger, around 1.4 cm/s. In both cases, linear drag is utterly negligible for all practical



situations.

5. A projectile is launched with initial velocity vi from the start of a ramp, with the ramp making
an angle ϕ with respect to the horizontal. The projectile is launched with an angle θ > ϕ with
respect to the horizontal. (a) At what position along the ramp does the projectile land? (b) What
angle θ maximizes the distance the particle makes it along the ramp (your answer will be in terms
of the angle ϕ? Note no numeric solution is required.

θ ϕ

v⃗i

Figure 1: A projectile is launched onto a ramp.

Solution: Let the origin be at the projectile’s launch position, with the x and y axes of a cartesian
coordinate system aligned as shown below.

θ ϕ
v⃗i tanϕ =

dy

dx
= slope

Figure 2: Where does the projectile hit the ramp?

Thus ramp begins at position (0, 0), and the projectile is launched from (0, 0). We seek the inter-
section of the projectile’s trajectory with the surface of the ramp at position (xhit, yhit), subject to
the conditions that xhit, yhit≥0 to have a sensible solution.

We already know the trajectory y(x) for a projectile launched from the origin:

yp = x tan θ − gx2

2|vi|2 cos2 θ
(16)

The ramp itself can be described by as a line. We know the slope m of the ramp is m=∆x/∆y=



tanϕ, and we know it intersects the point (xo, yo) = (0, 0). This is sufficient to derive an equation
of the line describing the ramp’s surface, yr(x), using point-slope form:

yr − yo = m (x− xo)

yr = (tanϕ)x

The distance l the projectile goes along the ramp surface is found simply from (xhit, yhit) or xhit
and ϕ:

l =
√
x2hit + y2hit or l =

x

cosϕ
(17)

The point of intersection is yr=yp, resulting x value is the xhit we desire.

yr = x tanϕ = yp = x tan θ − gx2

2|vi|2 cos2 θ
note x = l cosϕ (18)

l cosϕ tanϕ = l cosϕ tan θ − gl2 cos2 ϕ

2|vi|2 cos2 θ
(19)

tanϕ = tan θ − gl cosϕ

2|vi|2 cos2 θ
(20)

l =
2|vi|2 cos2 θ

g cosϕ
(tan θ − tanϕ) =

2|vi|2 cos θ

g cosϕ
(sin θ − tanϕ cos θ) (21)

l =
2|vi|2 cos θ

g cos2 ϕ
(sin θ cosϕ− sinϕ cos θ) =

2|vi|2 cos θ sin (θ − ϕ)

g cos2 ϕ
(22)

As we should expect, the distance up the ramp depends on the relative angle between the ramp
and launch, θ−ϕ. We could have found this result a bit more quickly if we had noted the identity
below (which we basically just derived).i

tan θ − tanϕ =
sin (θ − ϕ)

cos θ cosϕ
(23)

In order to maximize the distance up the ramp with respect to launch angle, we require dl/dθ=0.
This is simple enough:

dl

dθ
=

d

dθ

2|vi|2 cos θ sin (θ − ϕ)

g cos2 ϕ
=

2|vi|2

g cos2 ϕ
cos (ϕ− 2θ) = 0 (24)

If we restrict ourselves to sensible ramp angles, ϕ∈ [0−π/2], this implies ϕ−2θ= π
2 . In the limiting

case of no ramp (ϕ= 0, launch over flat ground), this predicts θ=π/4 for maximum range, which
we know to be correct. Below are plots of the distance along the incline as a function of launch

itanx± tan y = sin x
cos x

± sin y
cos y

= sin x cos y±cos x sin y
cos x cos y

= sin (x±y
cos x cos y



angle for various ramp angles, with the distance in units of 2v2i /g for convenience:
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Since the maximum distance for a given ϕ depends on ϕ − 2θ, if we instead plot the distance l
versus θ−ϕ/2 all the curves should line up symmetrically about θ−ϕ/2=π/4. This is an important
conclusion: just as the angle for maximum range over level ground was π/4, for maximum range up
the ramp the launch angle minus half the ramp angle should be π/4. I’ve included the python code
for generating the first plot at the end of this solution set in case you are curious.
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Incidentally, if you solve the more general problem of launching the projectile a distance d before
the start of the ramp (see picture below), this is the result:

l =

[
|vi|2 cos2 θ

g cosϕ

] [(
tan θ − tanϕ

)
+

√
(tanϕ− tan θ)2 +

2d tanϕ

|vi|2 cos2 θ

]
− d

cosϕ
(25)

=

[
|vi|2 cos θ

g cos2 ϕ

][
sin (θ − ϕ) +

√
sin2 (θ − ϕ) +

2d sinϕ cosϕ

|vi|2 cos2 θ

]
− d

cosϕ
(26)

You can verify that for d= 0 you recover our previous result. This solution presumes you have a
launch velocity sufficient to reach the ramp in the first place. That requirement you can find by
setting the projectile’s range equal to d, and you find |vi|2 sin 2θ ≥ gd.



θ ϕ

d

!vi

Figure 3: Launching the projectile before the start of the ramp.

6. The origin of the quadratic drag force on any projectile in a fluid is the inertia of the fluid
that the projectile sweeps up. (a) Assuming the projectile has cross-sectional area A (normal to
its velocity) and speed v, and that the density of the fluid is ρ, show that the rate at which the
projectile encounters fluid (mass/time) is ρAv. (b) Making the simplifying assumption that all of
this fluid is accelerated to the speed v of the projectile, show that the net drag force on the projectile
is ρAv2. (It is certainly not true that all the fluid the projectile encounters is accelerated to the full
speed v, and one might guess the actual force has a correction factor κ < 1, so that fquad=κρAv2,
with κ depending on the shape of the body, smaller for more streamlined objects).

Solution: In a time ∆t, our cross-sectional area A crosses a distance v∆t, meaning it has swept out
a volume Avt. Assuming a constant fluid density, this implies the mass encountered is ∆m = ρAv∆t.
The rate is then

ṁ =
∆m

∆t
=
ρAv∆t

∆t
= ρAv (27)

If the mass encountered is ∆m, then accelerating it to velocity v implies the fluid gains a momentum
(∆m)v, and conservation of momentum dictates that the object must change its momentum by
−(∆m)v. The time rate of change of this momentum is the drag force.

∆p = (∆m)v (28)

F =
∆p

∆t
= v

∆m

∆t
= ρAv2 (29)

7. Problem 2.7 from your textbook is about a class of 1-D problems that can always be reduced to
doing an integral. Specifically, if F is a function of v alone (F = F (v)), then you can show

t = m

∫
vo

v
dv′

F (v′)
(30)

Here is another class of problems. Show that if the net force on a 1-D particle depends only on



position, F = F (x), then Newton’s second law can be solved to find v as a function of x given by

v2 = v2o +
2

m

x∫
xo

F (x′) dx′ (31)

[Hint: Use the chain rule to prove the following handy relationship (the “v dv/dx rule”): if you
regard v as a function of x, then v̇ = vdv/dx = (1/2)dv2/dx. Use this to rewrite Newton’s second
law in the separated form md(v2) = 2F (x) dx and then integrate from xo to x.] Comment on the
result for the case that F (x) is actually a constant. (You may also recognize your solution as a
statement about kinetic energy and work.)

Solution: Start with our rule:

a = v̇ =
dv

dt
=
dv

dx

dx

dt
=
dv

dx
ẋ = v

dv

dx
=

1

2

dv2

dx
(32)

Now separate variables, multiply by m/2 to recover recognizable quantities, and integrate.

2a dx = dv2 (33)
1

2
mdv2 = madx = F dx (34)

v∫
vo

1

2
md(v′)2 =

x∫
xo

F (x′) dx′ (35)

1

2
mv2 − 1

2
mv2o =

x∫
xo

F (x′) dx′ or v2 = v2o +
2

m

x∫
xo

F (x′) dx′ (36)

The first expression in the last line is a statement of the work-energy theorem. If F is constant,

v2 = v2o +
2

m

x∫
xo

F (x′) dx′ = v2o +
2F

m
(x− xo) (37)

Using F = ma, we recover the familiar result from introductory mechanics v2 = v2o + 2a(x− xo).

8. Using the result of the previous problem, consider a mass m constrained to move on the x axis
and subject to a force F = −kx, where k is a positive constant. The mass is released from rest at
x = xo at time t = 0. First find the speed using equation 31, and then using v = dx/dt, separate
the equation and integrate. You should recognize this as one way – not the easiest – to solve the
simple harmonic oscillator.

Solution: Let F = −kx.



v2 = v2o +
2

m

x∫
xo

F (x′) dx′ = v2o +
2

m

x∫
xo

−kx′ dx′ = v2o +
2

m

(
−1

2
kx2 +

1

2
kx2o

)
(38)

v2 = v2o +
k

m

(
x2o − x2

)
note vo = 0 (39)

v2 =
k

m

(
x2o − x2

)
or v = ẋ =

√
k

m
(x2o − x2) = ±ω

√
x2o − x2 (40)

Now we separate variables and integrate:

dx

dt
= ±ω

√
x2o − x2 (41)

ω dt =
dx√
x2o − x2

(42)

t∫
0

ω dt =

x∫
xo

dx′√
x2o − (x′)2

(43)

We can proceed in 2 ways: trig substitution, or brute force. First, trig substitution, where we let
x = xo sin θ and dx = xo cos θ dθ.

t∫
0

ω dt = ωt =

∫
xo

x
dx′√

x2o − (x′)2
=

x∫
xo

cos θ dθ√
1− sin2 θ

=

x∫
xo

dθ (44)

ωt = θ

∣∣∣∣x
xo

= sin−1
(
x

xo

)∣∣∣∣x
xo

= sin−1
(
x

xo

)
− sin−1 1 = sin−1

(
x

xo

)
− π

2
(45)

x = xo sin
(
ωt+

π

2

)
= xo cosωt (46)

And the brute force method, in which we just look up the integral:

ωt =

x∫
xo

dx′√
x2o − (x′)2

= sin−1
(
x

xo

)∣∣∣∣x
xo

= sin−1
(
x

xo

)
− π

2
(47)

sin
(
ωt+

π

2

)
= cosωt =

x

xo
(48)

x = xo cosωt (49)

9. A mass m has speed vo at the origin and coasts along the x axis in a medium where the drag
force is F (v) =−cv3/2. Use the “v dv/dx rule” above to write the equation of motion in separated
form md(v2) = 2F (x) dx, and then integrate both sides to give x in terms of v (or vice versa). Show
that it will eventually travel a distance 2m

√
vo/c.



Solution: Starting with our favorite rule,

mẍ = mv̇ =
1

2
m
dv2

dx
= −cv3/2 (50)

dx = −mdv2

2cv3/2
= − mdv2

2c(v2)3/4
(51)

x∫
0

dx′ = x =

v∫
vo

− md(v′)2

2c[(v′)2]3/4
=
−m
2c

4(v2)
1
4

∣∣∣∣v
vo

=
2m

c

(√
vo −

√
v
)

= x(v) (52)

The net distance traveled is after the particle finally comes to rest and v = 0: xnet =
2m
√
vo

c .

10. A basketball has mass m= 0.6 kg and diameter D= 0.24m. (a) What is its terminal speed?
(See example 2.5 . . . ) (b) If it is dropped from a 30-m tower, how long does it take to hit the
ground and how fast is it going when it does so? [Hint: review the “vertical motion with quadratic
drag” section.] Compare with the corresponding numbers in a vacuum

Solution: From equation (2.59) in the text, and noting γ = 0.25Ns2/m4,

vt =

√
mg

γD2
≈ 20.2m/s (53)

From (2.58) in the text, with y = 30m

y =
v2t
g

ln

[
cosh

(
gt

vt

)]
(54)

e
gy

v2t = cosh

(
gt

vt

)
(55)

t =
vt
g

cosh−1
(
e

gy

v2t

)
≈ 2.78 s (56)

From (2.57) in the text,

v = vt tanh

(
gt

vt

)
≈ 17.65m/s (57)

In vacuum, one expects v =
√

2gy ≈ 24.3m/s and t =
√

2y/g ≈ 2.47 s.

11. [Bonus Question; Computer] The differential equation for the skateboard in example 2,
ϕ̈ = − g

R sinϕ cannot be solved in terms of elementary functions, but is easily solved numerically.
(a) Do this for the case ϕo = 20◦, with R= 5m and g= 9.8m/s2. Make a plot of ϕ(t) for two or
three periods. (b) On the same plot, show the approximate solution given by (1.57) with the same
ϕo=20◦. Comment on the two graphs. (c) Repeat for ϕo=π/2.



Solution: It is fairly easy to solve the problem in Mathematica, which UA students have free access
to. Below is a screenshot of a Mathematic notebook to perform the calculation, followed by the plots
generated for the two initial angles. For ϕo = 20◦, the agreement is essentially perfect for the first
two cycles. For ϕo = π/2, in spite of how large the initial angle is, the small-angle approximation
does pretty well for short times. The approximation oscillates too quickly, as one would expect
- for large amplitudes the true period is a little longer. I’m also attaching some example Python
code to do the same job using the built-in ODE solvers. (The ODE solvers only handle first-order
equations, so one has to recast the given second-order equation into two first-order equations.)
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Figure 4: Exact and approximate solutions to ϕ̈ = − g
R

sinϕ for a starting angle of (left) ϕo =20◦ and (right) ϕo = π/2.
Exact solutions are in blue, the analytic approximation is in orange.



from s c ipy . i n t e g r a t e import ode int
import matp lo t l i b . pyplot as p l t
import numpy as np

#Taylor Ch . 2 example 2
#the s o l u t i on fo r a p a r t i c l e in a s p h e r i c a l bowl i s i d e n t i c a l to t ha t o f a pendulum

#see h t t p s :// docs . s c i py . org/doc/ sc ipy / re f e r ence / generated / sc ipy . i n t e g r a t e . ode in t . html

# our equation , i f we inc lude a damping term , i s
# the ta ’ ’ ( t ) + b∗ t h e t a ’ ( t ) + c∗ s in ( t h e t a ( t ) ) = 0
# where b and c are p o s i t i v e constants , and a prime ( ’ ) denotes a d e r i v a t i v e . To so l v e
#t h i s second order equat ion with odeint , we must f i r s t conver t i t to a system of f i r s t
#order equa t ions . By de f i n i n g the angular v e l o c i t y omega( t ) = the ta ’( t ) , we ob ta in the
#system :

# the ta ’( t ) = omega( t )
# omega ’( t ) = −b∗omega( t ) − c∗ s in ( t h e t a ( t ) )
# l e t y = vec tor [ the ta , omega ]

#b i s the damping parameter [ damping propor t i ona l to angular v e l o c i t y ] , c i s the square o f
#the angular frequency , ( g/L) fo r a pendulum or ( g/R) fo r the bowl

def pendulum (y , t , b , c ) :
theta , omega = y
dydt = [ omega , −b∗omega − c∗np . s i n ( theta ) ]
return dydt

g = 9.81
L = 5 .0

b = 0 .0 #damping
c = g/L #g/R

#i n i t i a l cond i t i ons : s t a r t at ang le theta_o at r e s t and r e l e a s e
theta_o = np . p i /2
y0 = [ theta_o , 0 . 0 ] #=[ theta , t h e t a ’ ]

#s imu la te over 3 per iods on a gr i d with 100 po in t s per per iod
T = 3∗(2∗np . p i /np . s q r t ( g/L) )
t = np . l i n s p a c e (0 , T, 100∗T+1)

s o l = ode int ( pendulum , y0 , t , a rgs=(b , c ) )

#The so l u t i on i s an array with shape (10∗T+1, 2 ) . The f i r s t column i s t h e t a ( t ) , and the
#second i s omega( t ) . The f o l l ow i n g code p l o t s both components and the usua l smal l ang le
#so l u t i on

p l t . p l o t ( t , s o l [ : , 0 ] , ’ b ’ , l a b e l=’ theta ( t ) ’ )
#p l t . p l o t ( t , s o l [ : , 1 ] , ’ g ’ , l a b e l =’omega( t ) ’ )
p l t . p l o t ( t , ( theta_o )∗np . cos ( t ∗np . sq r t ( g/L) ) , ’ r ’ , l a b e l=’ smal l ␣ ang le ␣approx ’ )
p l t . l egend ( l o c=’ upper␣ r i g h t ’ )
p l t . x l ab e l ( ’ t ’ )
p l t . yl im ([−1.5∗ theta_o , 1 . 5 ∗ theta_o ] )
p l t . g r i d ( )
p l t . show ( )



Appendix: Python code for projectile-ramp plot

import math
import numpy as np
import matp lo t l i b . pyplot as p l t

p = [ 0 , 15 , 30 , 45 , 60 ] # ju s t s imu la te f o r a few i n t e r e s t i n g phi va lue s
l a b e l s = [ ’ 0$^\ c i r c $ ’ , ’ 15$^\ c i r c $ ’ , ’ 30$^\ c i r c $ ’ , ’ 45$^\ c i r c $ ’ , ’ 60$^\ c i r c $ ’ ]
c o l o r s = [ ’ r ’ , ’ g ’ , ’ b ’ , ’ k ’ , ’ o ’ ]

def x ( t , p ) :
return (np . cos ( t )∗np . s i n ( t−p ) ) / ( np . cos (p ))∗∗2
#for t e c hn i c a l reasons , use the s in () and cos () de f ined by numpy , not math
#the l a t t e r can ’ t handle array inputs , the former can .

#sp e c i f y a range o f launch ang l e s f o r the p l o t
t = np . arange (0 , 90 , 0 . 1 )
p l t . ax i s ( [ 0 . 0 , 9 0 , 0 . 0 , 0 . 6 ] )

ax = p l t . gca ( )
ax . set_autoscale_on ( Fa l se )

for i in range ( l en (p ) ) :
p l t . p l o t ( t , x (np . rad ians ( t ) , np . rad ians (p [ i ] ) ) , l a b e l=l a b e l s [ i ] )

p l t . x l ab e l ( ’ launch␣ ang le ␣ ( $^\ c i r c $ ) ’ )
p l t . y l ab e l ( ’ d i s t anc e ␣ to ␣ impact␣ along ␣ i n c l i n e ␣ ($2v_o^2/g$ ) ’ )
p l t . l egend ( t i t l e="ramp␣ i n c l i n a t i o n " , frameon=0)

#p l t . show () #wr i t e to screen
p l t . s a v e f i g ( ’ p r o j e c t i l e −ramp−p l o t s . pdf ’ , bbox_inches=’ t i g h t ’ ) #wri t e to f i l e


