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1. A projectile that is subject to quadratic air resistance is thrown vertically up with initial speed
vo. (a) Write down the equation of motion for the upward motion and solve it to give v(t). (b)
Show that the time to reach the top of the trajectory is
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)
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(c) For the baseball of Example 2.5 in your text (with vter = 35m/s), find ttop for the cases that
vo = 1, 10, 20, 30, 40m/s and compare with the corresponding values in a vacuum.

Solution: (a) Starting from Newton’s laws, write down the force balance. Then separate variables
and integrate.
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(b) At the top, v=0, so the argument of the tan function in equation 9 above must be zero.
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(c) The time to the top without air resistance is the familiar result ttop=vo/g. With the numbers
given and g=9.81m/s2:

vo (m/s) ttop (s; with drag) ttop (s; no drag)

1 0.110 0.102
10 0.993 1.019
20 1.852 2.039
30 2.528 3.058
40 3.040 4.077

2. Two people, each of mass mh, are standing at one end of a stationary railroad flatcar with
frictionless wheels and mass mfc. Either person can run to the other end of the flatcar and jump off
with the same speed u (relative to the car). (a) Use conservation of momentum to find the speed
of the recoiling car if the two people run and jump simultaneously. (b) What is it if the second
person starts running only after the first has jumped? Which procedure gives the greater speed to
the car? [Hint: The speed u is the speed of either person, relative to the car just after they have
jumped; it has the same value for either person and is the same in parts (a) and (b).]

Solution: (a) Assume both people jump along +x. Let the flatcar’s recoil velocity be v, so that
u − v is the speed of either person relative to the ground just after they jump. Conservation of
momentum implies

2mh(u− v) = mfcv (11)

v =
2mh

2mh +mfc
u (12)

(b) Let v′ be the recoil speed of the flatcar just after the first person jumps and v′′ that after the
second person jumps. For the first jump, conservation of momentum works just like it did above
except that only one person jumps:

mh(u− v) = (mfc +mh)v (13)

v′ =
mh

2mh +mfc
u (14)

For the second jump, we have to account for the fact that the flatcar is already moving with speed
v′ along −x. In this case, conservation of momentum gives

pi = pf (15)

−(mh +mfc)v
′ = mh(u− v′′)−mfcv

′′ (16)



Simplifying,

v′′ =
mhu+ (mh +mfc)v

′

mh +mfc
=

2mh(3mh + 2mfc)

(2mh + 2mfc)(2mh +mfc)
u (17)

In order to compare with the result of (a), we can use Eq. 12 to relate u and v:

v′′ =
3mh + 2mfc

2mh + 2mfc
v (18)

Since the fraction above is always greater than 1, it is clear that v′′ > v so the second method gives
the larger final velocity.

3. Many applications of conservation of momentum involve conservation of energy as well, and we
haven’t yet begun our discussion of energy. Nevertheless, you know enough about energy from your
introductory physics course to handle some problems of this type. Here is one elegant example: an
elastic collision between two bodies is defined as a collision in which the total kinetic energy of the
two bodies is the same before and after the collision (for example, the collision of two billiard balls,
which generally lose extremely little of their kinetic energy.) Consider an elastic collision between
two equal mass bodies, one of which is initially at rest. Let their velocities be v1 and v2 = 0 before
the collision, and v′1 and v′2 after. Write down the vector equation representing the conservation
of momentum and the scalar equation which expresses that the collision is elastic. Use these to
prove that the angle between v′1 and v′2 is 90◦. This result was important in the history of atomic
and nuclear physics: that two bodies emerged from a collision traveling on perpendicular paths was
strongly suggestive that they had equal mass and had undergone an elastic collision.

Solution: Momentum tells us (since the masses are equal)

v′1 + v′2 = v1 = v1x̂ (19)

where we have chosen the x axis to be the direction of v1 for simplicity. Square that to find the
magnitude of both sides:

v21 = |v′1 + v′2|2 = (v′1)
2 + (v′2)

2 − 2v′1v
′
2 cos θ (20)

Here θ is the angle between v′1 and v′2. Since the masses are the same, conservation of kinetic energy
adds:

v21 = (v′1)
2 + (v′2)

2 (21)

Clearly, the last two equations can only both be true, aside from the trivial case of v′1 = v′2 = 0, if



cos θ = 0, or θ=90◦.

4. A rocket (initial mass mo) needs to use its engines to hover stationary, just above the ground.
(a) If it an afford to burn no more than a mass λmo of its fuel, how long can it hover? [Hint: Write
down the condition that the thrust just balances the force of gravity. You can integrate the resulting
equation by separating the variables t and m. Take vex to be constant.] (b) If vex≈3000m/s and
λ≈10%, for how long could the rocket hover just above the earth’s surface?

Solution: (a) The rocket’s thrust is −ṁvex, which should just balance the force of gravity, mg,
noting that m is a function of time. Thus

mv̇ = −ṁvex −mg = 0 (22)

=⇒ ṁvex = −mg (23)

(24)

The negative sign makes sense, since gravity opposes the thrust. Now we separate variables and
integrate. We start with mass mo and end with mass mo − λmo.

ṁvex =
dm

dt
vex = −mg (25)
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Now integrate from initial to final mass:
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(b) With the numbers given, t≈32 s.

5. Consider a rocket (initial mass mo) accelerating from rest in free space. At first, as it speeds up,
its momentum p in creases, but as its mass m decreases p eventually begins to decrease. For what
value of m (in terms of mo) is p maximum?

Solution: We already know equation (3.8) from your textbook:

v − vo = vex ln
(mo

m

)
(29)



With p = mv, starting from rest (vo=0):

p = mvex ln
(mo

m

)
(30)

We can find the extreme values of p by finding dp/dm:

dp

dm
= vex ln

(mo

m

)
−mvex ·

1

m
= vex

[
ln
(mo

m

)
− 1
]
= 0 (31)
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m
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Here e is the base of the natural logarithms, 2.718 . . . We found an extreme point, but is it a
maximum? A plot of p(m) makes it obvious, but we can check the second derivative:

d2p

dm2
= −vex ·

1

m
< 0 (33)

The second derivative is zero for all m, so we have found a maximum.

6. (a) Consider a rocket traveling in a straight line subject to an external force F ext acting along
the same line. Show that the equation of motion is

mv̇ = −ṁvex + F ext (34)

[Review the derivation of equation (3.6) in the book but keep the external force term.] (b) Specialize
to the case of a rocket taking off vertically (from rest) in a (constant) gravitational field g, so the
equation of motion becomes

mv̇ = −ṁvex −mg (35)

Assume that the rocket ejects mass at a constant rate, ṁ = −k (where k is a positive constant),
so that m = mo − kt. Solve the equation for v as a function of t. (c) Using the rough data from
problem 3.7 in your textbook, find the space shuttle’s speed two minutes into flight, assuming (what
is nearly true) that is travels vertically up during this period and that g does not change appreciably.
Compare with the corresponding result if there were no gravity. (d) Describe what would happen
to a rocket that was designed so that the first term on the right of equation 35 was smaller than
the initial value of the second.

Solution: (a) Start with momentum conservation. Aside from the rocket’s change in momentum,
we have to add in the impulse from the external force. In analogy with equation 3.4 in your text,
we can write down the rocket’s change in momentum.



dPtot = P (t+ dt)− P (t) = mdv + dmvex (36)

The rocket’s change in momentum should equal the impulse delivered by the external force:

F ext dt = mdv + dmvex (37)

F ext = mv̇ + ṁvex (38)

mv̇ = −ṁvex + F ext (39)

(b) With F ext = −mg, and ṁ = kt such that m = mo − kt,

mv̇ = −ṁvex −mg (40)

v̇ =
dv

dt
= −ṁ

m
vex − g = −dm

dt
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m
− g (41)

dv = −dm
m
vex − g dt (42)

Now we can integrate both sides
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(c) With vex ≈ 3000m/s, mo/m ≈ 2, t = 120 s, we find v ≈ 900m/s compared to ≈ 2100m/s
without gravity. (d) If −ṁvex < −mg, the rocket’s thrust is less than the force of gravity and the
rocket cannot leave the ground until it sheds enough mass that the thrust can overcome the rocket’s
weight. Not a good design.

7. Use the results of the previous problem giving v(t) for a rocket accelerating vertically from rest
in a gravitational field g. Now integrate v(t) to show the rocket’s height as a function of t is

y(t) = vext−
1

2
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k
ln
(mo

m

)
(46)

Using the numbers given in problem 3.7 in your textbook, estimate the space shuttle’s height after
2 minutes.

Solution: We just have to integrate the result of the previous problem.
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With vex ≈ 3000m/s, t = 120 s, mo/m = 2, and m = 1× 106 kg we can first find k:

m = mo − kt (50)

1× 106 kg = 2× 106 kg− k(120 s) (51)

k = 8333 kg/s (52)

With these numbers, we find y ≈ 4× 104m.

8. (a) We know that the path of a projectile thrown from the ground is a parabola if we ignore
air resistance. In the light of equation (3.12) in your textbook (Fext = MR̈), what would be the
subsequent path of the CM of the pieces if the projectile exploded in midair? (b) A shell is fired
from ground level so as to hit a target 100m away. Unluckily, the shell explodes prematurely and
breaks into two equal pieces. The two pieces land at the same time, and one lands 100m beyond
the target. Where does the other piece land? (c) Is the same result true if they land at different
times (with one piece still landing 100m beyond the target)?

Solution: (a) Only internal forces act, so from momentum conservation the CM must continue
along a parabolic path. (b) For the CM trajectory to be unchanged, the other piece must land
100m short of the target, meaning it will hit the gun that fired it! (c) If one piece lands 100m
beyond the target and the second piece lands at a different time, the CM trajectory is no longer the
original parabolic path, and there must be an external force F acting on the projectile to break into
two equal pieces. Originally we had Fext =MR̈ =Mg, now we have Fext =MR̈ =Mg+F 6=Mg

9. Use spherical polar coordinates (r, θ, ϕ) to find the CM of a uniform solid hemisphere of radius
R whose flat face lies in the xy plane with its center at the origin. You will need the element of
volume in spherical polar coordinates.

Solution: By symmetry, we know x = y = 0. That means we need only find the CM position for
the z axis. The distance to the z axis is r cosϕ. Assuming a constant density σ and volume element
r2 sinϕdr dθ dϕ,



z =

∫
z dm∫
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0

2π∫
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R∫
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=

1
4R

4σ
π/2∫
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10. I have a hemispherical bowl of radius R, and I wish to fill it to a height h such that half
the volume is filled. To what height h (in terms of R) do I need to fill it? (Imagine you have a
hemispherical 1 tsp measuring spoon and need to fill it to 1/2 tsp.)

Solution: Assume the flat face of the bowl lies in the x − y plane at z = 0, with the bottom at
z = −R. If the bowl is filled to height z, at that height (R − z)2 + r2 = R2, where r is the radius
at height z. That means r2 = 2Rz − z2. The volume of a circular segment of width dz at height z
is then πr2 dz. The volume when filling to a height h is then

V =

h∫
0

πr2 dz =

h∫
0

π(2Rz − z2) dz = πRz2 − π

3
z3
∣∣∣∣h
0

= πRh2 − πh3

3
=

1

3
πh2(3R− h) (55)

At h = R the volume is 2πR3/3 as expected. To fill the bowl to half volume, we need V = πR3/3.
This gives us

h2(3R− h) = R3 (56)

There is in fact an analytic solution involving various roots of i, but it is not terribly enlightening.
A numerical solution gives h ∈ {−0.53209, 0.65270, 2.8794}R. Only h = 0.65270R falls within the
valid range of heights. So, you can fill your bowl about 65% of the way up to use half the volume.
Or, to better than 2%, just fill it to 2/3 the height and you’ll have half the volume.


