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1. A particle moves under the influence of a central force directed toward a fixed origin O. (a)
Explain why the particle’s angular momentum about O is constant. (b) Give in detail the argument
that the particle’s orbit must lie in a single plane containing O.

Solution: (a) Let the force be F = fr r̂.

l̇ = r× F = r× (frr̂) = (rr̂)× (frr̂) = rfr(r̂× r̂) = 0 (1)

The fact that l̇ = 0 indicates l is constant. (b) l = r×p means l is perpendicular to a plane formed
by r and p. That means p lies in a plane with r, and because r points toward O, this plane must
contain O in order to keep l fixed.

2. Consider a planet orbiting a fixed sun. Take the plane of the planet’s orbit to be the xy plane,
with the sun at the origin, and label the planet’s position by polar coordinates (r, ϕ). (a) Show
that the planet’s angular momentum has magnitude l = mr2ω, where ω = ϕ̇ is the planet’s angular
velocity about the sun. (b) Show that the rate at which the planet “sweeps out area” (as in Kepler’s
second law) is dA/dt = 1

2r
2ω, and hence dA/dt = l/2m. Deduce Kepler’s second law.

Solution: (a)Because we have a central force, v is tangential and perpendicular to r. This means
|v| = rϕ̇ = rω. From the definition of l:

l = r× p = r× (mv) = m(r× v) (2)

|l| = m(r)(rω) = mr2ω (3)

(b) Over a slice of angle dϕ, with constant radius r, the area is dA = 1
2(r)(r dϕ) = 1

2r
2 dϕ, as shown

in Fig. 1 (for infinitesimal dϕ, we treat the pie slice as a triangle). Since r is constant, ṙ = 0, and
the rate of change of dA is determined only by ϕ,

dA =
1

2
r2 dϕ (4)

dA

dt
=

1

2
r2
dϕ

dt
=

1

2
r2ϕ̇ =

1

2
r2ω (5)

Or, starting from equation (3.24) in your text, with ṙ =constant,



dA =
1

2
|r× r dϕ| (6)

∣∣∣∣
dA

dt

∣∣∣∣ =
1

2

∣∣∣∣r× r
dϕ

dt

∣∣∣∣ =
1

2
r2ω since r ⊥ ϕ (7)

∣∣∣∣
dA

dt

∣∣∣∣ =
|l|
2m

(8)

Figure 1: Area of a segment dϕ of a circle of radius r.
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3. A juggler is juggling a uniform rod one end of which is coated in tar and burning. He is holding
the rod by the opposite end and throws it up so that, at the moment of release, it is horizontal, its
CM is traveling vertically up at speed vo and it is rotating with angular velocity ωo. To catch it, he
wants to arrange that when it returns to his hand it will have made an integer number of complete
rotations. What should vo be, if the rod is to have exactly n rotations when it returns to his hand?

Solution: We need the time of flight to be equal to an integer number of rotation periods. This
also means the net angular displacement should be a multiple of 2π, so ∆θ = ωot = 2πn. The time
of flight starting and ending at the origin (setting the origin at the launch point) is given by

y = vot−
1

2
gt2 = 0 =⇒ t =

2vo
g

(9)

Equating that to the rotation time will satisfy the condition that the rod arrives back at the origin
after an integer number of full rotations.

ωot = ωo

(
2vo
g

)
= 2πn =⇒ vo =

nπg

ωo
(10)

4. A system consists of N masses mα at positions rα relative to a fixed origin O. Let r′α denote
the position of mα relative to the CM; that is, r′α = rα −R. (a) Make a sketch to illustrate this
last equation. (b) Prove the useful relations that

∑
mαr′α = 0. Can you explain why this relation



is nearly obvious? (c) Use this relation to prove the result (3.28) in your textbook that the rate
of change of the angular momentum about the CM is equal to the total external torque about the
CM. (This result is surprising since the CM may be accelerating, so that it is not necessarily a fixed
point in any inertial frame.)

Solution: (a) Noting r′α = rα −R,

(b) In the x′−y′ system, the CM is at R′ = 0. Writing down the sum and substituting the definition
of r′α,

∑
mαr′α =

∑
mα (rα −R) =

∑
mαrα −

(∑
mα

)
R = MR−MR = 0 (11)

This is equivalent to finding the net torque due to gravity about the CM, which is zero since the
gravitational force acts on the center of mass. More to the point, the sum (1/M)

∑
mαr′α defines

the position of the CM relative to the CM, which is clearly zero.

(c) The angular momentum about the CM is

L(about CM) =
∑

r′α ×mαṙ′α (12)

Taking the time derivative,

L̇ =
∑

ṙ′α ×mαṙ′α +
∑

r′α ×mαr̈′α (13)

= 0 +
∑

r′α ×mα

(
r̈α − R̈

)
(14)

=
∑

r′α × Fα −
(∑

mαr′α

)
× R̈ (15)

= Γ(about CM)− 0 (16)

= Γext(about CM) (17)

The first sum on the right in the first line is zero because the cross product of two parallel vectors



(in this case the cross product of the same vector) is zero. The second sum on the third line is zero
based on the result of part (b). Finally, in the last line we can say Γ = Γext since we have already
established that the sum of internal torques cancels.

(Alternate, longer solution to part c): First, establish that Lo = Lo,cm,orbit +Lo,cm,spin, where “spin”
means rotation of the body about its center of mass and “orbit” means the entire body rotating
around the origin. Also note rα = r′α+R (with the same relationship holding after a time derivative
on either side):

Loα = rα × pα = rα ×mαṙα for any mα (18)

Lo =
∑

α

Loα =
∑

α

rα ×mαṙα =
∑

α

mα

(
r′α + R

)
×mα

(
ṙ′α + Ṙ

)
(19)

=
∑

α

mαr′α × ṙ′α +mαṘ× r′α +mαR× ṙ′α +mαR× Ṙ (20)

Now recall
∑
mαr′α =

∑
mαṙ′α = 0 (the second term follows from the fact that the net momentum

of all mα about the CM is zero). That means the second and third terms in equation 20 are zero.

Lo =
∑

α

mαr′α × ṙ′α +mαR× Ṙ (21)

The first term is the angular momentum about the center of mass (spin), since it has the form of
angular momentum expressed in terms of coordinates relative to the center of mass, and the second
is the angular momentum of the CM about O (orbit), since it has the form of angular momentum
expressed in terms of coordinates about the origin. Thus,

Lo = Lo,cm,spin + Lo,cm,orbit (22)

Now we wish to find the rate of change of the angular momentum.

L̇o =
d

dt

(∑

α

mαr′α × ṙ′α +mαR× Ṙ

)
(23)

=
∑

α

mαṙ′α × ṙ′α +mαr′α × r̈′α +mαṘ× Ṙ +mαR× R̈ (24)

The first and third terms are zero since for any vector a, a× a = 0



L̇o =
∑

α

mαr′α × r̈′α +mαR× R̈ =

(∑

α

r′α ×mαr̈′α

)
+
(
R× R̈

)∑

α

mα (25)

=

(∑

α

r′α ×mαr̈′α

)
+M

(
R× R̈

)
=

(∑

α

r′α × Fext

)
+
(
R× Fext) (26)

For the second to last line we noted that R and R̈ are the same for all mα; for the last line we
noted that Fext = MR̈. The first term is L̇o,cm,spin, which we want to relate to the external torque,
and the second is L̇o,cm,orbit. We know that L̇o = Γext, and L̇o = L̇o,cm,spin + L̇o,cm,orbit, so it follows
that L̇o,cm,spin = L̇o − L̇o,cm,orbit. Starting from the definition of external torque,

L̇o = Γext =
∑

α

rα × Fext
α =

∑

α

(
r′α + R

)
× Fext

α =

(∑

α

r′α × Fext

)
+
(
R× Fext) (27)

L̇o =

(∑

α

r′α × Fext

)
+ L̇o,cm,orbit (28)

The last term in the second line, we noted that R× Fext is the torque about the origin L̇o,cm,orbit.
Comparing, the term in brackets is precisely what we found previously for the spin term. This will
complete our proof, since

∑
α

r′α×Fext is the net external torque measured relative to the CM (since

we are using r′).

L̇o,cm,spin = L̇o − L̇o,cm,orbit =
∑

α

r′α × Fext = Γext(about CM) (29)

or L̇(about CM) = Γext(about CM) (30)

5. An infinitely long, uniform rod of mass µ per unit length is situated on the z axis. (a) Calculate
the gravitational force F on a point mass m a distance ρ from the z axis. (b) Rewrite F in terms
of the rectangular coordinates (x, y, z) of the point and verify that ∇ × F = 0. (c) Show that
∇ × F = 0 using the expression for ∇ × F in cylindrical polar coordinates (given inside the back
cover of your textbook). (d) Find the corresponding potential energy U .

Solution: (a) You may remember this problem from your introductory physics course. Here is the
setup:
The force on m1 due to an element dm as shown is

dF = −Gm1dm r̂

r2
= −Gm1dm r̂

ρ2 + z2
(31)

Clearly only the horizontal ρ̂ components of the force (along the ρ direction away from z) count
when we sum over all dm, by symmetry the vertical components will cancel. By symmetry we can



z

m1

dm r =
p
⇢2 + z2

x⇢

also just integrate z from 0 to ∞ and double the result, since the −∞ to 0 segment will have the
same contribution. Thus, noting cos θ = ρ/

√
ρ2 + z2, dF = dF cos θ ρ̂, and dm = µdz

F =

∫
dF = 2

∫
dF cos θ ρ̂ =

∞∫

0

−2Gm1dm

ρ2 + z2
ρ√

ρ2 + z2
ρ̂ = −2Gm1µρ

∞∫

0

dz ρ̂

(ρ2 + z2)3/2
(32)

= −(2Gm1µρ)

(
z ρ̂

ρ2 (ρ2 + z2)1/2

)∣∣∣∣∣

∞

0

= −(2Gm1µρ)

(
ρ̂

ρ2 (1 + ρ2/z2)3/2

)∣∣∣∣∣

∞

0

(33)

= −2Gm1µρ

(
1− 0

ρ2

)
ρ̂ = −2Gm1µ

ρ
ρ̂ (34)

(b) Given that we have only an ρ̂ component of force, and it only depends on ρ which is constant,
the curl is zero by inspection. With ρ =

√
x2 + y2, we can write ρ̂ = x̂ cosϕ + ŷ sinϕ, with

tanϕ = y/x, so the expression for force becomes

F = −2Gm1µ

ρ2
(x̂x+ ŷ y + ẑ 0) (35)

Since Fx depends only on x, Fy depends only on y, and Fz = 0, the curl is zero.

∇× F = det

∣∣∣∣∣∣∣

x̂ ŷ ẑ
∂
∂x

∂
∂y

∂
∂z

Fx Fy FZ

∣∣∣∣∣∣∣

∇× F = x̂

(
∂Fz
∂y
− ∂Fy

∂z

)
+ ŷ

(
∂Fx
∂z
− ∂Fz

∂x

)
+ ẑ

(
∂Fy
∂x
− ∂Fx

∂y

)
= 0 (36)

(c) In cylindrical polars, we have Fϕ = Fz = 0. What was the x axis is now the ρ axis, and thus
only nonzero component is

F = Fρ ρ̂ = −2Gm1µ

ρ
ρ̂ (37)



Inspecting the curl in cylindrical polars, it is easy enough to see that if Fρ is independent of ϕ and
z and Fϕ = Fz = 0, then ∇× F = 0.

(d) We only need to integrate. Note that U(ρo) = 0.

U = −
ρ∫

ρo

(
−2Gm1µ

ρ′

)
dρ′ = 2Gm1µ ln

(
ρ

ρo

)
(38)

6. Evaluate the work done

W =

P∫

O

F · dr =

P∫

O

(Fx dx+ Fy dy) (39)

by the two dimensional force F = (−y, x) for the three paths joining P and Q show in the figure
below and defined as follows: (a) This path goes straight form P = (1, 0) to the origin and straight
to Q = (0, 1). (b) This is a straight line from P to Q. (Write y as a function of x and rewrite the
integral as an integral over x. (c) This is a quarter-circle centered on the origin. (Write x and y in
polar coordinates and rewrite the integral as an integral over ϕ.)

Solution: (a) Going from (1, 0)→ (0, 0)→ (0, 1),

W =

∫
Fx dx+ Fy dy =

0∫

x=1

−y dx+

1∫

y=0

x dy = 0 + 0 = 0 (40)

Since the force is always perpendicular to the displacement, the work must be zero.



(b) Now y = −x+ 1, and thus dy = −dx.

W =

∫
Fx dx+ Fy dy =

(0,1)∫

(1,0)

−y dx+ x dy =

0∫

x=1

(x− 1) dx− x dx =
1

2
x2 − x− 1

2
x2
∣∣∣∣
1

0

= 1 (41)

(c) Following the circle, we know

x = r cos θ (42)

y = r sin θ (43)

r = r cos θ x̂ + r sin θ ŷ (44)

r = 1 (45)

With F = (−y, x), this means

F = −r sin θ x̂ + r cos θ ŷ (46)

dr = −r sin θ dθ x̂ + r cos θ dθ ŷ (47)

Finally,

W =

∫
F · dr =

∫
(− sin θ x̂ + cos θ ŷ) · (− sin θ dθ x̂ + cos θ dθ ŷ) (48)

W =

π/2∫

0

sin2 θ + cos2 θ dθ =

π/2∫

0

1 dθ =
π

2
(49)

7. A particle of mass m is moving on a frictionless horizontal table and is attached to a massless
string, whose other end passes through a hole in the table, where I am holding it. Initially the particle
is moving in a circle of radius ro with angular velocity ωo, but now I pull the string down through
the hole until a length r remains between the hole and the particle. (a) What is the particle’s
angular velocity now? (b) Assuming that I pull the string so slowly that we can approximate the
particle’s path by a circle of slowly shrinking radius, calculate the work I did in pulling the string.
(c) Compare your answer to part (b) with the particle’s gain in kinetic energy.

Solution: (a) From conservation of angular momentum,

Li = Lf =⇒ mr2oωo = mr2ω =⇒ ω = ωo

(ro
r

)2
(50)

(b) We should calculate the work done in moving from ro to r. We’ll need the net force, which
must equal the centripetal force F = −(mv2/r) r̂ = −mrω2 r̂.



W =

∫
F · dr =

∫
−mrω2 r̂ · dr = −

r∫

ro

mrω2 dr (51)

Noting ω = ωo
(
ro
r

)2,

W = −
r∫

ro

mrω2
o

(
r4o
r4

)
dr = −mω2

or
4
o

4∫

ro

1

r3
dr = mω2

or
4
o

(
1

2r2

)∣∣∣∣
r

ro

=
1

2
mω2

or
4
o

(
1

r2
− 1

r2o

)

W =
1

2
mω2

or
2
o

[(ro
r

)2
− 1

]
(52)

(c) We should calculate the gain in kinetic energy.

W = ∆T =
1

2
mr2ω − 1

2
mr2oω

2
o =

1

2
m

(
r2ω2

o

(
r4o
r4

)
− r2oω2

o

)
=

1

2
mr2oω

2
o

[(ro
r

)2
− 1

]
(53)

∆T = W , as expected.

8. Consider a small frictionless puck perched at the top of a fixed sphere of radius R. If the puck
is given a tiny nudge so that it begins to slide down, through what vertical height will it descend
before it leaves the sphere? [Hint: Use conservation of energy to find the puck’s speed as a function
of its height, then use Newton’s second law to find the normal force of the sphere on the puck. At
what value of this normal force does the puck leave the sphere?]

Solution: Let θ be the angular position of the puck on the sphere, with θ = 0 when the puck is a
the top of the sphere. At angle θ, the puck will have height R cos θ above the ground. With U = 0

at ground level, conservation of energy gives

mgR =
1

2
mv2 +mgR cos θ (54)

v2 = 2gR (1− cos θ) (55)

The normal force at an angle θ is the component of the puck’s weight acting in the radial direction,
and must equal the centripetal force.

N = mg cos θ =
mv2

R
=⇒ v2 = gR cos θ (56)

Comparing equations 55 and 56, we must have



2 (1− cos θ) = cos θ (57)

3 cos θ = 2 (58)

θ = arccos
2

3
≈ 48.2◦ (59)

9. A mass m is in a uniform gravitational field, which exerts the usual force F = mg vertically
down, but with g varying according to time, g = g(t). Choosing axes with y measured vertically up
and defining U = mgy as usual, show that F = −∇U as usual, but, by differentiating E = 1

2mv
2+U

with respect to t, show that E is not conserved.

Solution: With U = mgy, we can find the force readily.

F = −∇U = − ∂

∂y
(mgy) ŷ = −mg ŷ (60)

As for the energy, noting g = g(t)

∂E

∂t
=

1

2
m (2vv̇) +mgẏ +mġy = mva+mgv +myġ = v (ma+mg) +myġ (61)

But we know ma = F = −mg, so

∂E

∂t
= myġ 6= 0 (62)

Energy is conserved only if the gravitational field is time-independent.

10. Consider a mass m on the end of a spring of force constant k and constrained to move along the
horizontal x axis. If we place the origin at the spring’s equilibrium position, the potential energy
is 1

2kx
2. At time t = 0 the mass is sitting at the origin and is given a sudden kick to the right so

that it moves out to a maximum displacement at xmax = A and then continues to oscillate about
the origin. (a) Write down the equation for conservation of energy and solve it to give the mass’s
velocity ẋ in terms of the position x and the total energy E. (b) Show that E = 1

2kA
2, and use

this to eliminate E from your expression for ẋ. Use this result in t =
∫
dx′/ẋ(x′) (4.58 in your

textbook), to find the time for the mass to move from the origin out to a position x. (c) Solve the
result of part (b) to give x as a function of t and show that the mass executes simple harmonic
motion with period 2π

√
m/k.

Solution: (a) Start with the energy of the oscillator



E =
1

2
mẋ2 +

1

2
kx2 (63)

ẋ =

√
2E

m
− k

m
x2 (64)

(b) At the maximum extent of the mass, we know x = A and ẋ = 0, so

E =
1

2
mẋ2 +

1

2
kx2 =

1

2
kA2 (65)

=⇒ ẋ =

√
2E

m
− k

m
x2 =

√
kA2

m
− k

m
x2 =

√
k

m

√
A2 − x2 (66)

Using equation 4.58,

t =

∫
dx

ẋ
=

x∫

0

√
m

k

1√
A2 − x2

dx =

√
m

k

x∫

0

1√
A2 − x2

dx (67)

t =

√
m

k
arcsin

( x
A

)∣∣∣∣
x

0

=

√
m

k
arcsin

( x
A

)
(68)

(c) Invert the arcsin and solve for x(t):

x(t) = A sin

(√
k

m
t

)
(69)

This is indeed simple harmonic motion with T = 2π
ω = 2π

√
m
k .


