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1. The potential energy of two atoms in a molecule can sometimes be approximated by the Morse
potential,

U(r) = A

[(
e−(r−R)/S − 1

)2
− 1

]
(1)

where r is the distance between the two atoms and A, R, and S are positive constants with S � R.
(a) Sketch this function for 0 < r < ∞. (b) Find the equilibrium separation ro, at which U(r)

is minimum. (c) Now write r = ro + x so that x is the displacement from equilibrium, and show
that for small displacements, U has the approximate form U = const + 1

2kx
2. That is, Hooke’s law

applies. (d) What is the force constant k? (bonus +5) Interpret R, S, and A physically in terms
of characteristic properties of diatomic molecules. Hint: the Morse potential is well known.

Solution: When r = 0, we have U = A
[
(eR/S − 1)2 − 1

]
, which is large and positive since R� S.

When r is large, U is negative since the term in () is less than one, and as r →∞, U → 0. Here is
a plot (with A = R = S = 1):
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The minimum value of U occurs at r = R with U(R) = −A, meaning the equilibrium separation is
ro = R.

dU

dr
= 2A

(
e−(r−R)/S − 1

)(R− r
S

e−(r−R)/S

)
(2)

= 2A

(
R− r
S

)(
e−2(r−R)/S − e−(r−R)/S

)
= 0 (3)

=⇒ r = R (4)



For small displacements around ro, set r = R+ x where x << R and Taylor expand about R:

U(R+ x) = A

[({
1− x

S
+ . . .

}
− 1
)2
− 1

]
≈ −A+A

(x
S

)2
= const +

1

2
kx2 (5)

Where k = 2A/S2. The term in curly brackets {} is the first two terms in the Taylor expansion of
e−(r−R)/S = e−x/S .

2. An unusual pendulum is made by fixing a string to a horizontal cylinder of radius R, wrapping the
string several times around the cylinder, and then tying a mass m to the loose end. In equilibrium,
the mass hangs a distance lo vertically below the edge of the cylinder. (a) Find the potential energy
if the pendulum has swung to an angle ϕ from the vertical. (b) Show that for small angles, it
can be written in Hooke’s law form U = 1

2kϕ
2. (c) Comment on the value of k. Hint: Draw a

figure, understand the geometry. At an angle ϕ, what length of rope is wrapped around the cylinder
compared to when ϕ = 0? The remaining length helps you find the height.

Solution: See the figure below. The PE is U = −mgh, where h is the height of the mass with
respect to the center of the cylinder. As the pendulum swings through an angle ϕ, a length of rope
Rϕ unwinds off of the cylinder. (When it swings back the other way past equilibrium, a length Rϕ
winds around the cylinder).
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Thus, the free length of the string not touching the cylinder at an angle ϕ is the length AB or
lo +Rϕ. The height BD is that length times cosϕ, i.e., (lo +Rϕ) cosϕ. The last distance we need,
CD, is R sinϕ, and we can find h since it must equal BC − CD, or

h = lo cosϕ+R (ϕ cosϕ− sinϕ) (6)



Thus,

U = −mgh = −mg [lo cosϕ+R (ϕ cosϕ− sinϕ)] (7)

If we assume ϕ is small, then cosϕ ≈ 1− ϕ2/2 and sinϕ ≈ ϕ:

U ≈ −mg
[
lo −

1

2
loϕ

2 +R

(
ϕ(1− 1

2
ϕ2)− ϕ

)]
= −mg

[
lo −

1

2
loϕ

2 +R(ϕ− 1

2
ϕ3 − ϕ)

]
(8)

Neglecting the term of order ϕ3,

U ≈ −mglo −
1

2
mgloϕ

2 = const +
1

2
kϕ2 (9)

The constant k = mglo is just what you would get for a pendulum of length lo. The effect of
the cylinder is apparent only at higher orders than ϕ2 - for small oscillations, wrapping the string
around the cylinder makes no difference. That is not surprising - for small angles, the fractional
change in the string’s length is negligible. Note that if we did keep the third order term in ϕ, the
potential energy would be an odd function rather than an even function, meaning it is slightly easier
to unwrap string than to wrap string.

3. A practical sort of problem. You are told that at known positions x1 and x2, an oscillating mass
m has speeds v1 and v2. What are the amplitude and angular frequency of the oscillations?

Solution: This means we have two expressions for the energy of the oscillator, which we know is
constant.

E =
1

2
kA2 =

1

2
mv21 +

1

2
kx21 (10)

E =
1

2
kA2 =

1

2
mv22 +

1

2
kx22 (11)

Subtracting the two equations, we find

m
(
v21 − v22

)
= k

(
x22 − x21

)
(12)

Rearranging,

k

m
= ω2 =

v21 − v22
x22 − x21

(13)



Going back to the first equation, and using the result above,

A2 =
m

k
v21 + x21 =

(
x22 − x21
v21 − v22

)
v21 + x21 =

x22v
2
1 − x21v22
v21 − v22

(14)

4. The potential energy of a one-dimensional mass m at a distance r from the origin is

U(r) = Uo

(
r

R
+ λ2

R

r

)
(15)

for 0 < r < ∞, with Uo, R, and λ all positive constants. (a) Find the equilibrium position
ro. (b) Let x be the distance from equilibrium and show that, for small x, the PE has the form
U = const + 1

2kx
2. (c) What is the angular frequency of small oscillations? Hint: for small

displacements, Taylor expand U about ro and focus on the second-order term. The constant term
can be defined to zero by a suitable choice of zero potential energy. What must be true of the
first-order term in equilibrium?

Solution: A plot is always handy so we have an idea of what we are dealing with. We’ll plot r/R
on the x axis and U/Uo on the y axis (so units don’t matter) with λ = 1.
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As one would expect from the form of U(r), the 1/r term dominates for small r, while at large r
the behavior is linear. This implies that there is a minimum in between, which we observe in the
plot. The equilibrium position is when ∂U/∂r = 0 and ∂2U/∂r2 > 0.

∂U

∂r
=
Uo
R

+ λ2Uo

(
−R
r

)
= Uo

(
1

R
− λ2 R

r2

)
= 0 (16)

=⇒ 1

R
= λ2

R

r2
=⇒ =⇒ r = ±λR (17)



Checking the second derivative,

∂2U

∂r2
=

2Uoλ
2R

r3
(18)

Clearly ∂2U/∂r2 > 0 for all r > 0, so the stable equilibrium point must be at ro = +λR. The
solution at r = −λR is an unstable equilibrium by the second derivative test. More to the point,
r < 0 is unphysical, since r is a distance from the origin and therefore always positive. For small
displacements about a stable equilibrium, we have already established that k = U ′′(ro). Using the
result above,

k = U ′′(ro) =
2Uoλ

2R

r3o
=

2Uoλ
2R

λ3R3
=

2Uo
λR2

(19)

ω =

√
k

m
=

√
2Uo
λmR2

(20)

5. Consider a two-dimensional anisotropic oscillator with motion given by

x(t) = Ax cos (ωxt) (21)

y(t) = Ay cos (ωyt− δ) (22)

(a) Prove that if the ratio of frequencies is rational (that is, ωx/ωy = p/q where p and q are integers)
then the motion is periodic. What is the period? (b) Prove that if the same ratio is irrational, the
motion never repeats itself.

Solution: (a) From the given cos forms for x and y, it is clear both are periodic with Tx = 2π/ωx

and Ty = 2π/ωy. Periodicity requires that the periods Tx and Ty match eventually, meaning that
for two numbers p and q we require

pTx = qTy (23)

The period of the overall motion is for the smallest (p, q) that satisfy the equation above. Clearly,
this only works if Tx = (p/q)Ty, which is only possible if p and q are integers, {p, q} ∈ Z.

(b) If p/q is irrational, p and q have no least common multiple that is an integer, and our condition
for repetition above cannot be met. If p/q is irrational, then if one goes through p revolutions of 2π

for the x motion, there are 2πq revolutions of the y motion that is not a whole number of revolutions
and the motion cannot repeat.

Though not a rigorous proof, a visual demonstration is illustrative. Here are plots for rational p : q



in ratios (1 : 2), (2 : 3), (3 : 4), (2 : 5) from left to right. Notice how there are p repeats along x and
q repeats along y.

Now look at the some plots for irrational values of p/q, with p : 1 = (1 :
√

2), (1 :
√

3), (
√

2 :
√

3), (3 :

π) from left to right. Even though we quadrupled the range of times plotted, the motion still does
not repeat – the curve never closes back on itself.

These types of curves are known as Lissajous curves (https://en.wikipedia.org/wiki/Lissajous_
curve), and can be generated on an oscilloscope fairly easily with a pair of function generators.

6. A damped oscillator satisfies the equation

mẍ+ bẋ+ kx = 0 (24)

where Fdamp = −bẋ is the damping force. Find the rate of change of the energy E = 1
2mẋ

2 + 1
2kx

2

(by straightforward differentiation), and, with the help of the equation above, show that dE/dT is
(minus) the rate at which energy is dissipated by Fdamp.

Solution: We know the energy is

E =
1

2
mẋ2 +

1

2
kx2 (25)

Differentiating with respect to time,

dE

dt
=

1

2
m (2ẋẍ) + kxẋ = ẋ (mẍ+ kx) (26)

But, we know mẍ = −kx− Fdamp = −kx− bẋ, so mẍ+ kx = −bẋ.

dE

dt
= ẋ (mẍ+ kx) = ẋ (−bẋ) = −vFdamp (27)

Since vFdamp is the rate at which the damping force does work, so we have the desired result.

https://en.wikipedia.org/wiki/Lissajous_curve
https://en.wikipedia.org/wiki/Lissajous_curve


7. An undamped oscillator has period τo = 1.000 s, but I now add a little damping so that its period
changes to τ1 = 1.001 s. (a) What is the damping factor β? (b) By what factor will the amplitude
of oscillation decrease after 10 cycles? (c) Which effect of damping would be more noticeable, the
change in period or the decrease in amplitude? Justify your answer.

Solution: Note τo = 2π/ωo and τ1 = 2π/ω. For a lightly damped oscillator, we know ω2
1 = ω2

o−β2,
so β2 = ω2

o − ω2 = ω2
(
1− ω2

1/ω
2
o

)
. Thus,

β = ωo

√
1− ω2

1

ω2
o

= ωo

√
1− τ2o

τ21
= ωo

√
1− 1

1.0012
≈ 0.0447ωo = 0.281 s−1 (28)

Since β ≈ 0.0447ωo, our claim of light damping is justified. At a time t = 10τ1 ≈ 10τo, the amplitude
changes by a factor

A

Ao
= e−βt = e−10βτo ≈ 0.060 (29)

The amplitude changes by about 1 part in 17 (1/0.060 ∼ 17), whereas the period changes by only
1 part in 1000 (0.1%), clearly the change in amplitude is more noticeable.

8. The solution for x(t) for a driven, underdamped oscillator is most conveniently found in the
form

x(t) = A cos (ωt− δ) + e−βt [B1 cos (ω1t) +B2 sin (ω1t)] (30)

Solve the equation above and the corresponding expression for ẋ, to give the coefficients B1 and
B2 in terms of A, δ, and the initial position and velocity xo and vo. You should reproduce the
expressions given in Example 5.3 in your textbook.

Solution: Just have to do the math.

x(t) = A cos (ωt− δ) + e−βt [B1 cos (ω1t) +B2 sin (ω1t)] (31)

x(0) = A cos δ +B1 ≡ xo (32)

ẋ(t) = −ωA sin (ωt− δ)− βe−βt [B1 cos (ω1t) +B2 sin (ω1t)] (33)

+ e−βt [−ω1B1 sin (ω1t) + ω1B2 cos (ω1t)] (34)

ẋ(0) = −ωA sin−δ − βB1 + ω1B2 = ωA sin δ − βB1 + ω1B2 ≡ vo (35)

=⇒ B1 = xo −A cos δ (36)

=⇒ B2 =
1

ω1
(vo − ωA sin δ + βB1) (37)

This matches equation 5.70 in example 5.3 in the text.



9. We know that if the driving frequency ω is varied, the maximum response (A2) of a driven
damped oscillator occurs at ω ≈ ωo (if the natural frequency is ωo, and the damping constant
β � ωo). Show that A2 is equal to half its maximum value when ω ≈ ωo± β, so that the full width
at half maximum is just 2β. [Hint: be careful with your approximations. For instance, it is fine to
say ω + ωo ≈ 2ωo, but you certainly can’t say ω − ωo ≈ 0.]

Solution: The response is given by

A2 =
f2o

(ωo − ω)2 + 4β2ω2
(38)

For β � ω, the maximum response comes when ω ≈ ωo, where

A2
max ≈

f2o
4β2ω2

≈ f2o
4β2ω2

o

(39)

When A2 is half this value, the denominator in the original expression should be twice as big as in
the expression above, 8β2ω2

o . At some frequency ω 6≈ ωo, this means

8β2ω2
o = (ωo − ω)2 + 4β2ω2 (40)

4β2ω2 = (ωo − ω)2 = (ωo − ω)2 (ωo + ω)2 (41)

While we can’t say ωo − ω ≈ 0, we can say ωo + ω ≈ 2ωo, so

4β2ω2 = (ωo − ω)2 (ωo + ω)2 ≈ (2ωo)
2 (ωo − ω)2 = 4ω2

o (ωo − ω)2 (42)

=⇒ ωo − ω ≈ ±β (43)

Thus, the half maxima occur at ω = ωo ± β, so the full-width at half-maximum (FWHM) is 2β.

10. Another interpretation of the Q of a resonance comes from the following: Consider the motion
of a driven damped oscillator after any transients have died out, and suppose that it is being driven
close to resonance so you can set ω = ωo. (a) Show that the oscillator’s total energy (kinetic plus
potential) is E = 1

2mω
2A2. (b) Show that the energy ∆Edis dissipated during one cycle by the

damping force Fdamp is 2πmβωA2. (Remember that the rate at which a force does work is Fv.)
(c) Hence show that Qs is 2π times the ratio of E/∆Edis.

Solution: Since x(t) = A cos (ωt− δ), the total energy is

E =
1

2
mẋ2 +

1

2
kx2 =

1

2
mω2A2 cos2 (ωt− δ) +

1

2
kA2 sin2 (ωt− δ) (44)

Because ω ≈ ωo, we can say k = mω2
o ≈ mω2, and



E =
1

2
mẋ2 +

1

2
kx2 =

1

2
mω2A2 cos2 (ωt− δ) +

1

2
kA2 sin2 (ωt− δ) (45)

=
1

2
mω2A2

[
cos2 (ωt− δ) + sin2 (ωt− δ)

]
=

1

2
mω2A2 (46)

The rate at which the damping force dissipates energy is Fdampv = bv2 = 2mβv2 = dE
dt noting

β = b/m. Integrating over one period, with v2 = ω2A2 sin2 (ωt− δ)

∆Edis =

τ∫
0

2mβv2 dt = 2mβω2A2

τ∫
0

sin2 (ωt− δ) dt = 2mβω2A2

τ∫
0

1

2
[1− sin (2ωt− 2δ)] dt (47)

For the last step, we noted 2 sin2 θ = 1− sin 2θ. Since the integral of sin 2θ over one complete cycle
is zero, we have

∆Edis = 2mβω2A2

τ∫
0

1

2
dt = 2mβω2A2

(τ
2

)
= 2mβω2A2

(π
ω

)
= 2πmβωA2 (48)

We could have also noted that the average value of sin2 θ over one cycle is 1/2 and saved a step.
Combining the two results, and noting again ω ≈ ωo,

E

∆Edis
=

1
2mω

2A2

2πmβωA2
=

ω

4πβ
≈ ωo

4πβ
=

Q

2π
(49)

Another way of stating this is

Q = 2π
energy stored

energy dissipated per cycle
= ωo

energy stored
power loss

=
ωo
2β

=
resonance frequency

FWHM of resonance curve
(50)



11. BONUS +10: Consider a cart on a spring with natural frequency ωo = 2π, which is released
from rest at xo = 1 and t = 0. Using appropriate software, plot the position x(t) for 0 < t < 2 and
for damping constants β = 0, 1, 2, 4, 6, 2π, 10, 20. [Remember that x(t) is given by different formulas
for β < ωo, β = ωo, and β > ωo.]

Solution: On the next page is some python code that does the job, and below is a plot that
generates.
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import math
import matp lo t l i b . pyplot as p l t
import numpy as np

def x (b ,wo ) :
dt = 0.01 #time s t ep f o r s imu la t ion
ttemp=0
t =[ ]
x=[ ]
xtemp = 0

i f (b<wo ) : #weak damping
while ttemp <2.0:

xtemp = math . exp(−b∗ttemp )∗math . cos (math . s q r t (wo∗wo−b∗b)∗ ttemp )
x . append (xtemp)
t . append ( ttemp )
ttemp+=dt

i f (b==wo ) : #c r i t i c a l damping
while ttemp <2.0:

xtemp = math . exp(−b∗ttemp ) + ttemp∗math . exp(−b∗ttemp )
x . append (xtemp)
t . append ( ttemp )
ttemp+=dt

i f (b>wo ) : #strong damping
while ttemp <2.0:

xtemp = 0.5∗math . exp(−(b−math . sq r t (b∗b−wo∗wo))∗ ttemp )
+ 0.5∗math . exp(−(b+math . s q r t (b∗b−wo∗wo))∗ ttemp )

x . append (xtemp)
t . append ( ttemp )
ttemp+=dt

return (x , t )

b= [ 0 , 1 , 2 , 4 , 6 , 6 . 2 832 , 1 0 , 2 0 ] #var ious va lue s o f be ta and corresponding l a b e l s
l a b e l s = [ ’ 0 ’ , ’ 1 ’ , ’ 2 ’ , ’ 4 ’ , ’ 6 ’ , r ’ 2$\ pi$ ’ , ’ 10 ’ , ’ 20 ’ ]

wo=2∗3.14159 #osc f r e q wi thout damping

#presuming i n i t i a l p o s i t i on i s xo=0 at t=0

c o l o r s = [ ’#1f77b4 ’ , ’#f f 7 f 0 e ’ , ’#2ca02c ’ , ’#d62728 ’ ,
’#9467bd ’ , ’#8c564b ’ , ’#e377c2 ’ , ’#7 f 7 f 7 f ’ ]

#ju s t to c y c l e through co l o r s wi thout r epea t s .

for j in range ( l en (b ) ) : #ca l c u l a t e t r a j e c t o r i e s f o r d i f f e r e n t be ta s
t r a j e c t o r y , t = x (b [ j ] , wo)
p l t . p l o t ( t , t r a j e c t o r y , l a b e l=l a b e l s [ j ] , c o l o r=c o l o r s [ j ] )
p l t . axh l ine ( l i n ew id th=1)

p l t . x l ab e l ( ’ t ␣ ( s ) ’ )
p l t . y l ab e l ( r ’ $x/x_o$ ’ )

p l t . l egend ( t i t l e=r ’ $\beta$ ’ , fancybox=True , frameon=0,bbox_to_anchor =(1 . 0 , 1 . 0 ) ,
l o c=" best " , borderaxespad=0,prop={ ’ s i z e ’ : 6 } )

p l t . t ight_layout ( pad=7)

p l t . s a v e f i g ( ’ 5−31. pdf ’ , format=’ pdf ’ )
p l t . show ( ) #wri t e to screen


