Problem Set 5

due 8 October 2018

Instructions:

1. Answer all questions below (bonus questions optional).
2. Show your work for full credit.
3. All problems are due by $11: 59 \mathrm{pm}$ on 8 October 2018.
4. You may collaborate, but everyone must turn in their own work.
5. Consider a ray of light traveling in a vacuum from point P_{1} to P_{2} by way of point Q on a plane mirror, as shown below. Show that Fermat's principle implies that, on the actual path followed, Q lies in the same vertical plane as P_{1} and P_{2} and obeys the law of reflection, $\theta_{1}=\theta_{2}$. [Hints: let the mirror lie in the $x z$ plane, and let P_{1} lie on the y axis at $\left(0, y_{1}, 0\right)$ and P_{2} in the $x y$ plane at $\left(x_{2}, y_{2}, 0\right)$. Finally, let $Q=(x, 0, z)$. Calculate the time for light to traverse the path $P_{1} Q P_{2}$ and show that it is minimum when Q has $z=0$ and satisfies the law of reflection.]

6. Find the equation of the path joining the origin O to the point $P(1,1)$ in the $x y$ plane that makes the integral $\int_{O}^{P}\left(y^{\prime 2}+y y^{\prime}+y^{2}\right) d x$ stationary.
7. In general the integrand $f\left(y, y^{\prime}, x\right)$ whose integral we wish to minimize depends on y, y^{\prime}, and x. There is considerable simplification if f happens to be independent of y, that is, $f=f\left(y^{\prime}, x\right)$. Prove that when this happens, the Euler-Lagrange equation reduces to the statement that $\partial f / \partial y^{\prime}=$ const.

Since this is a first-order differential equation for $y(x)$, while the Euler-Lagrange equation is generally second order, this is an important simplification and the result is sometimes called a first integral of the Euler-Lagrange equation. In Lagrangian mechanics, we'll see that this simplification arises when a component of momentum is conserved.
4. You are given a string of fixed length l with one end fastened at the origin O, and you are to place the string in the $x y$ plane with its other end on the x axis in such a way as to enclose the maximum area between the string and the x axis. Show that the required shape is a semicircle. The area enclosed is $\int y d x$, but show that you can rewrite this in the form $\int_{O}^{l} f d s$, where s denotes the distance measured along the string from O, where $f=y \sqrt{1-y^{2}}$, and y^{\prime} denotes $d y / d s$. Since f does not involve the independent variable s explicitly, you can exploit the result of problem 6.20 in your textbook.

