University of Alabama
 Department of Physics and Astronomy

PH 301 / LeClair
Fall 2018

Problem Set 6 due 15 October 2018

Instructions:

1. Answer all questions below (bonus questions optional).
2. Show your work for full credit.
3. All problems are due by $11: 59 \mathrm{pm}$ on 15 October 2018.
4. You may collaborate, but everyone must turn in their own work.
5. (a) Write down the Lagrangian $\mathcal{L}\left(x_{1}, x_{2}, \dot{x}_{1}, \dot{x}_{2}\right)$ for two particles of equal mass $m_{1}=m_{2}=m$, confined to the x axis and connected by a spring with potential energy $U=\frac{1}{2} x^{2}$, where x is the extension of the spring, $x=\left(x_{1}-x_{2}-l\right)$ and l is the spring's unstretched length. You can assume mass 1 remains to the right of mass 2 at all times. (b) Rewrite \mathcal{L} in terms of the new variables $X=\frac{1}{2}\left(x_{1}+x_{2}\right)$ (the CM position) and x (the extension), and write down the two Lagrange equations for X and x. (c) Solve for $X(t)$ and $x(t)$ and describe the motion.
6. A mass m is suspended from a massless string, the other end of which is wrapped several times around a horizontal cylinder of radius R and moment of inertia I, which is free to rotate about a fixed horizontal axle. Using a suitable coordinate, set up the Lagrangian and the Lagrange equations of motion, and find the acceleration of the mass m. (The kinetic energy of a rotating cylinder is $\frac{1}{2} I \omega^{2}$.)
7. Using the usual angle φ as generalized coordinate, write down the Lagrangian for a simple pendulum of length l suspended from the ceiling of an elevator that is accelerating upward with constant acceleration a. (Be careful when writing T; it is probably safest to write the bob's velocity in component form.) Find the Lagrange equation of motion and show that it is the same as that for a normal, non-accelerating pendulum, except that g has been replaced by $g+a$. In particular, the angular frequency of small oscillations is $\sqrt{(g+a) / l}$.
8. We saw in example 7.3 in the text that the acceleration of an Atwood machine is $\ddot{x}=\left(m_{1}-\right.$ $\left.m_{2}\right) g /\left(m_{1}+m_{2}\right)$. It is sometimes claimed that this result is "obvious" because, it is said, the effective force on the system is $\left(m_{1}-m_{2}\right) g$ and the effective mass is $\left(m_{1}+m_{2}\right)$. This is not, perhaps, all that obvious, but it does emerge very naturally int he Lagrangian approach. Recall that the Lagrange equation can be thought of as

$$
\begin{equation*}
(\text { generalized force })=(\text { rate of change of generalized momentum }) \tag{1}
\end{equation*}
$$

Show that for the Atwood machine the generalized force is $\left(m_{1}-m_{2}\right) g$ and the generalized momentum is $\left(m_{1}+m_{2}\right) \dot{x}$.
5. A pendulum consists of a mass m and a massless stick of length 1 . The pendulum support oscillates horizontally with a position given by $x(t)=A \cos \omega t$. What is the general solution for the angle of the pendulum as a function of time?
6. Consider a mass m connected to a spring of force constant k, confined to the x axis. We know the system executes simple harmonic motion with frequency $\omega=\sqrt{k / m}$ if the spring is massless. Using the Lagrangian approach, you can find the effect of the spring's mass M as follows. (a) Assuming the spring is uniform and stretches uniformly, show that its kinetic energy is $\frac{1}{6} M \dot{x}^{2}$. (As usual x is the extension of the spring from its equilibrium length.) Write down the Lagrangian for the system of cart plus spring (note $U=\frac{1}{2} k x^{2}$ still holds.) (b) Write down the Lagrange equation and show that the mass still executes SHM, but with angular frequency $\omega=\sqrt{k /(m+M / 3)}$; that is, the effect of the spring's mass M is just to add $M / 3$.

