University of Alabama
 Department of Physics and Astronomy

PH 301 / LeClair
Fall 2018

Problem Set 8 due 9 November 2018

Instructions:

1. Answer all questions below (bonus questions optional).
2. Show your work for full credit.
3. All problems are due by $11: 59 \mathrm{pm}$ on 9 November 2018.
4. You may collaborate, but everyone must turn in their own work.
5. A massless spring (force constant k_{1}) is suspended from the ceiling, with a mass m_{1} hanging from its lower end. A second massless spring (force constant k_{2}) is suspended from m_{1}, and a second mass m_{2} is suspended from the spring's lower end. Assuming that the masses move only in a vertical direction and using coordinates y_{1} and y_{2} measured from the masses' equilibrium positions,
 2×1 column made up of y_{1} and y_{2}. Find the 2×2 matrices $\underline{\underline{\boldsymbol{M}}}$ and $\underline{\underline{\boldsymbol{K}}}$.
6. (a) Find the normal frequencies for the system of two carts and three springs shown in Fig. 11.1 in your text, for the case that $m_{1}=m_{2}$ and $k_{1}=k_{3}$ (but k_{2} can be different). Check that your answer is correct for the case that $k_{1}=k_{2}$ as well. (b) Find and describe the motion in each of the two normal modes in turn. Compare with the motion found for the case that $k_{1}=k_{2}$ in section 11.2 of your textbook. Explain any similarities.
7. (a) Find the normal frequencies for small oscillations of the double pendulum of Fig. 11.9 in your text for arbitrary values of the masses and lengths. (b) Check that your answers are correct for the special case that $m_{1}=m_{2}$ and $L_{1}=L_{2}$. (c) Discuss the limit that $m_{2} \rightarrow 0$.
8. (a) Referring again to Fig. 11.9 in your textbook, find the normal frequencies and modes of the double pendulum given that $m_{1}=8 m, m_{2}=m$, and $L_{1}=L_{2}=L$. (b) Find the actual motion [$\left.\varphi_{1}(t), \varphi_{2}(t)\right]$ if the pendulum is released from rest with $\varphi_{1}=0$ and $\varphi_{2}=\alpha$. Is the motion periodic? (Hint: recall a condition for periodicity from a previous homework.)
9. We desire to superpose the oscillations of several simple harmonic oscillators having the same frequency ω and amplitude A, but differing from one another by constant phase increments α; that is,

$$
\begin{equation*}
x(t)=A \cos \omega t+A \cos (\omega t+\alpha)+A \cos (\omega t+2 \alpha)+A \cos (\omega t+3 \alpha)+\cdots \tag{1}
\end{equation*}
$$

You should be able to show that the sum on the right-hand side above is equivalent to a single oscillator with frequency ω, amplitude A_{o}, and phase φ. Specifically, show that for N oscillators

$$
\begin{equation*}
x(t)=(N A) \frac{\sin (N \alpha / 2)}{N \sin (\alpha / 2)} \cos \left[\omega t+\left(\frac{N-1}{2}\right) \alpha\right] \tag{2}
\end{equation*}
$$

[Bonus, $+\mathbf{2}$: Explain why an array of oscillators with a constant phase offset might be useful.]
6. Two resistors are connected in parallel, with values R_{1} and R_{2}. A total current I_{o} divides somehow between them. Show that the condition $I_{1}+I_{2}=I_{o}$, together with the requirement of minimum power dissipation, leads to the same current values that we would calculate with normal circuit formulas. This illustrates a general variational principle that holds for direct current networks: the distribution of currents within the networks, for a given input current I_{o}, is always that which gives the least total power dissipation.

