
University of Alabama
Department of Physics and Astronomy

PH 301 / LeClair Fall 2018

Lecture 13: Ch. 5.6
21 Sept 2018

1 Resonance

Recall from last time our solution for the damped oscillator

x(t) = A cos (ωt+ δ) (1)

A2 =
f2o

(ω2
o − ω2)2 + 4β2ω2

(2)

As expected, A2 is proportional to the energy of the oscillator, and the amplitude A is proportional
to the drive strength, A ∝ fo.

The most interesting cases are when β is small, meaning the second term in the denominator for
A2 is small.

• if ω and ωo are very different, the first term in the denominator is large and the amplitude is
small

• if ω is close to ωo, both terms in the denominator are small and the amplitude is large

• dramatic change as you vary ω or ωo

Here’s a plot for small β.

Figure 1: Amplitude squared of a driven oscillator as a function of natural frequency ωo with the drive frequency ω fixed.
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Left alone, the system vibrates at ωo. Trying to force it at a drive frequency ω? Responds well only
if ω ≈ ωo - this is resonance! For example, a radio. Adjusting the dial, you are varying the resonant
frequency of a tuned LCR circuit. When its ωo matches the broadcast frequency ω, you get a large
response. This produces a voltage in your radio circuit (which is then demodulated, etc.). Only
when ω ≈ ωo do you get an appreciable signal excited.

It does depend on whether we vary ω or ωo, since the denominator of A2 is
(
ω2
o − ω2

)2
+ 4β2ω2.

• vary ωo with ω fixed (radio)? Denominator is minimum when ω = ωo, the first term is zero

• very ω with ωo fixed? Max when ω =
√
ω2
o − 2β2 ≡ ω2 because both terms have ω, while only

the first has ωo

• for β � ωo, the difference is small

Now we have several frequencies to keep track of:

ωo =

√
k

m
natural frequency of system (3)

ω1 =
√
ω2
o − β2 frequency of damped oscillations (4)

ω frequency of driving force (5)

ω2 =
√
ω2
o − 2β2 value of ω at which response is maximum (6)

At the maximum, ω = ωo and Amax = fo
2βωo

. For maximum response you want to minimize damping,
adjust the drive frequency to match ωo, and lower frequencies are better if all else is the same.

2 Width of resonance - Q factor

Clearly, as we increase β the width of the resonance increases. The typical figure of merit is the Full
Width at Half Maximum (FWHM), meaning the breadth of the peak at half its maximum intensity.
In the homework you’ll show that FWHM≈ 2β. The sharpness of the resonance is the ratio of this
width to the resonance frequency, and is known as the “quality factor” or Q factor:

Q =
ωo
2β

= 2π
energy stored

dissipation per cycle
(7)

A large Q means a narrow resonance, which is what you would want for something like a clock.
Here are some typical Q values for common oscillators.
Another view of the Q factor is that oscillations die out with a decay time of ≈ 1/β, but the period
of oscillation is 2π/ωo, so

Q = π
decay time
period

(8)
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Figure 2: Amplitude for driven oscillations for various β.

Figure 3: FWHM

oscillator Q

pendulum 100
quartz crystal oscillator 104

precision LCR 104-106

atom 108

atomic clock 1011

In other words, it is a measure of how many oscillations per decay time one gets, which relates to
how well you could measure time or frequency with your oscillator. For an oscillating atom (e.g.,
Na in a discharge lamp) the period is about 10−15 s, but the decay time is around 10−8 s, so gets
around ten million oscillations before the amplitude has decayed by a factor of 1/e ≈ 0.37.

3 Phase at resonance

The phase we found to be

δ = arctan

(
2βω

ω2
o − ω2

)
(9)
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What happens if you vary ω from well below resonance (for small β)? For ω � ωo, δ is small and
the oscillations are in step with the drive. As ω approaches ωo, δ slowly increases. At ω = ωo,
δ = π/2, and the oscillations are 90◦ behind the drive! When ω > ωo, the argument of the arctan
is negative and δ increases beyond π/2 toward π.

Figure 4: Phase vs drive frequency for two values of β.
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