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1 Coupled Oscillators

One oscillator (e.g., mass-spring) has one natural frequency. Two or more coupled oscillators will
have several natural (“normal”) frequencies, and the general motion is a combination (superposition)
of vibrations at all the different natural frequencies.

First, we will consider two masses and three springs with no friction, as shown below. Let the
springs, from left to right, be k1, k2, and k3. The positions of the masses x1 and x2 are measured
from their equilibrium positions, and we assume that at equilibrium all three springs are at their
relaxed lengths. Spring 2 is what couples the left and right oscillators together - with it present, one
mass can’t move without the other moving. We can proceed with either a Newtonian or Lagrangian
approach. For this problem, neither gives much advantage over the other, so we will stick with a
Newtonian approach. For more complex problems, like a double pendulum, the Lagrangian approach
has clear advantages.

First, mass 1 feels forces from springs k1 and k2. If spring k2 is stretched by x2 then it is compressed
by x1, so its total change in length is ∆x2 = x2−x1. Spring k1 is only stretched by x1, so the force
equation is easily found.

F1 = −k1x1 + k(x2 − x1) = −(k1 + k2)x1 + k2x2 (1)

We can do the same thing for spring 2, and arrive at the (coupled!) equations of motion:

m1ẍ1 = −(k1 + k2)x1 + k2x2 (2)

m2ẍ2 = k2x2 − (k2 + k3)x2 (3)
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Note that these two equations have a compact matrix form (where matrices have a double underline):

M ẍ = −Kx (4)

Here the definitions are

x =

[
x1

x2

]
labels config. of system; 2 degrees of freedom = 2 elements (5)

M =

[
m1 0

0 m2

]
(6)

K =

[
k1 + k2 −k2
−k2 k2 + k3

]
off-diagonal elements = coupling! (7)

With only one degree of freedom (1 mass, 1 spring), we are back to our scalar equation mẍ = −kx.
Note M and K are symmetric - while we won’t make much use of that fact now, it is key to the
underlying mathematics. How to solve this? A reasonable guess is that there is a stable oscillating
solution - there should be solutions where the two carts both oscillate with the same frequency.
E.g.,

x1,2 = α1,2 cos (ωt− δ1,2) (8)

y1,2 = α1,2 sin (ωt− δ1,2) (9)

Since we have a linear equation, we can try both of these at once by using a complex exponential
as our trial solution and taking the real part at the end.

z1 = x1(t) + iy1(t) = αei(ωt−δ1) = α1e
−iδ1teiωt = a1e

iωt (10)

z2 = a2e
iωt (11)

Here we defined a1 = α1e
−iδ1t for convenience. Using a complex exponential is nice since it makes

the time dependence far simpler, and turns derivatives into multiplication. Combining,

z(t) =

[
z1(t)

z2(t)

]
=

[
a1

a2

]
eiωt = aeiωt (12)

a =

[
a1

a2

]
=

[
α1e

−iδ1

α2e
−iδ2

]
(13)
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In the end, the actual motion is x(t) = <[z(t)].i Using this form in M ẍ = −Kx, taking a second
derivative just multiplies the original function by −ω2:

−ω2Maeiωt = −Kaeiωt (14)

or
(
K − ω2M

)
a = 0 (15)

This is a generalized eigenvalue equation, a topic we will come back to in later lectures. The above
only has non-trivial solutions if the matrix K − ω2M has determinant zero (the trivial solution
being a = 0 when nothing moves). Since K and M are 2x2 matrices, we’ll end up with a quadratic
equation giving 2 solutions for 2 normal frequencies.

The general case is rather messy, for now we will assume all k’s and m’s are the same so we can
figure out what the important physics is.

1.1 Identical masses and springs

Now m1 = m2 ≡ m and k1 = k2 = k3 ≡ k, giving us

M =

[
m 0

0 m

]
(16)

K =

[
2k −k
−k 2k

]
(17)

and our matrix equation is

K − ω2M =

[
2k −mω2 −k
−k 2k −mω2

]
(18)

The determinant is

det(K − ω2M) =
(
2k −mω2

)2 − k2 (19)

= 4k2 − 4kmω2 +m2ω4 − k2 (20)

= 3k2 − 4kmω2 +m2ω4 (21)

=
(
k −mω2

) (
3k −mω2

)
(22)

Thus, the determinant is zero when ω = ω1 =
√
k/m and ω = ω2 =

√
3k/m. These are the two

(normal) frequencies at which the two carts can oscillate in purely sinusoidal fashion. Note that the
i<[x] means “take the real part of x”
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± is not necessary when taking the square root since +ω and −ω give the same solution. Sinusoidal
motion with any of the normal frequencies is a normal mode. The first is just like one cart moving
by itself, curious! What is the motion like?

x = <[z] (23)

z = aeiωt (24)

a =

[
a1

a2

]
(25)

This needs to satisfy (K − ω2M)a = 0. Now we know the frequencies, we need to solve for a.

1.2 First normal mode

For the first mode, ω1 =
√
k/m, so

K − ω2
1M =

[
k −k
−k k

]
= k

[
1 −1

−1 1

]
(26)

Which has determinant k2 − k2 = 0 as required. Noting (K − ω2M)a = 0,

k

[
1 −1

−1 1

][
a1

a2

]
= 0 (27)

This implies a1 − a2 = 0, and thus a1 = a2 = Ae−iδ. The motion is then

z(t) =

[
a1

a2

]
eiω1t =

[
A

A

]
ei(ω1t−δ) (28)

x(t) = <[z(t)] =

[
x1(t)

x2(t)

]
=

[
A

A

]
cos (ω1t− δ) (29)

Or, more simply,

x1(t) = A cos (ω1t− δ) (30)

x2(t) = A cos (ω1t− δ) (31)

This is the first normal mode, and the masses move with equal amplitudes exactly in phase. That
is, they both move in unison and keep a fixed distance apart, so the middle spring stays at its
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equilibrium length. That means there is no interaction between the two masses, and each cart
oscillates as though it were attached to a single spring! That’s why the first mode ended up with
ω1 =

√
k/m like a single mass-spring system, both masses just oscillate independently since k2

doesn’t change its length.

1.3 Second normal mode

For the second mode, ω2 =
√

3k/m, so

K − ω2
1M = −k

[
1 1

1 1

]
(32)

And again we can use (K − ω2M)a = 0, yielding

−k

[
1 1

1 1

][
a1

a2

]
= 0 (33)

Performing the matrix multiplication, we must have a1 + a2 = 0 or a1 = −a2 = Aeiδ. The motion
is then

z(t) =

[
a1

a2

]
eiω2t =

[
A

−A

]
ei(ω2t−δ) (34)

x(t) = <[z(t)] =

[
x1(t)

x2(t)

]
=

[
A

−A

]
cos (ω2t− δ) (35)

This time, both particles again the same amplitude but they are exactly out of phase! The two
masses are either moving toward each other or away from each other. We shouldn’t be surprised at
how this worked out - there are two degrees of freedom, and really only two basic ways to move: ei-
ther the masses move in the same direction (first mode) or they move in opposite directions (second
mode), any more complicated motion is a superposition of the two. Along those lines, we shouldn’t
be surprised that the frequency goes as

√
3k rather than

√
k – when the outer springs are stretched

by some amount, the middle one is stretched twice as much, so each mass in net feels a force three
times that of a single spring.

Here’s an applet that can help you understand the two modes: https://phet.colorado.edu/en/
simulation/legacy/normal-modes – set the polarization to ⇐⇒.

1.4 General solution

We have 2 solutions so far, our 2 normal modes:
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x(t) = A1

[
1

1

]
cos (ω1t− δ1) (36)

x(t) = A2

[
1

−1

]
cos (ω2t− δ2) (37)

Both satisfy M ẍ = −Kx. But our differential equations are homogenous, so the sum of these two
solutions is also a solution:

x(t) = x1(t) + x2(t) (38)

In fact, this must be the general solution. To start with, we had two 2nd order differential equations,
so we expect a total of 4 overall constants to be determined by boundary conditions. In this case,
the four are A1, A2, δ1, and δ2, so the above must be the general solution. The general solution is
hard to visualize, but since ω2 =

√
3ω1 we do know from Ch. 5 (see problem 5.17) that the general

motion never repeats itself unless since the ratio of the two frequencies is irrational. That is, unless
one of the modes has amplitude zero (A1 or A2 is zero) and the system is oscillating in one of the
normal modes.

1.5 Normal coordinates

In any possible motion of the 2 mass system, both x1 and x2 vary in time. In normal modes, the
motion is sinusoidal, but still both vary - you can’t move one mass without moving the other. Given
the symmetry of the two modes, one would think it is possible to introduced some coordinates that
are fixed. For the first mode, where the masses move in unison, we know the difference in the
masses position is fixed, whereas in the second mode we know their average position is constant. In
fact, that’s exactly what we want to do: introduce two new generalized coordinates, one which is
constant in the first mode and one which is constant in the second mode.

These normal coordinates are less physically transparent than x1 or x2, but conveniently they can
vary independently of each other - one coordinate only relates to the first mode, and one only relates
to the second. Based on our argument above, the two coordinates should be

ξ1 =
1

2
(x1 + x2) (39)

ξ2 =
1

2
(x1 − x2) (40)

Remember that any two generalized coordinates are fine so long as we can map them back to the
original coordinates, this is clearly true of the x’s and ξ’s. In terms of these normal coordinates, for
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the first normal mode we have

first mode =

ξ1(t) = A cos (ω1t− δ)

ξ2(t) = 0
(41)

This representation makes it clear that in the first mode the average position ξ1 oscillates sinusoidally
with frequency ω1, but the (average) separation of the two masses ξ2 remains fixed – the masses
move in unison. For the second mode.

second mode =

ξ1(t) = 0

ξ2(t) = A cos (ω2t− δ)
(42)

It is also now much clearer that in the second normal mode the average separation of the two masses
ξ2 oscillates sinusoidally with the higher frequency ω2, but their average position remains constant
– the masses move symmetrically about the origin.

The general motion of the system is a superposition of ξ1 and ξ2, but the nice thing is that ξ1
oscillates only at frequency ω1 and ξ2 oscillates only at frequency ω2. Each normal coordinate
always oscillates at only one of the two normal frequencies, so a normal coordinate specifies the
instantaneous displacement of a particular normal mode of the system. If one or the other is zero
you are oscillating in a normal mode, otherwise you are oscillating with some mixture of the first
and second modes.

In this case the two modes were very simple to interpret physically and mathematically (the masses
move together or oppositely), but in more complex systems the use of normal coordinates can greatly
simplify things. Each normal coordinate has a characteristic frequency unaffected by the others,
and lets us pick out the parts of the system oscillating with normal frequencies ωi.
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