
University of Alabama
Department of Physics and Astronomy

PH 301 / LeClair Fall 2018

Lecture 3: Ch. 2.1-3
27 Aug 2018

1 The Character of Air Resistance

We knew very well ignoring air resistance is silly much of the time.

A baseball launched at 25◦ at 110mph should go 620 ft. This has likely never been done. All-time
longest home runs are 15−20% less than this, not to mention everyday launches with similar launch
parameters are far shorter (350− 400 ft)

What are the basic properties of the force of air resistance f?

• depends on speed, clearly

• opposite v for our purposes (not true in general - spinning objects, lift on airplane wings)

• depends on size or cross section/shape (hand out the car window | vs —)

• depends on surface finish (smooth or rough?)

• will depend on fluid properties - density and/or viscosity (only air for now)

v

f

w=mg

Air resistance f always acts to oppose the velocity v.

Summarizing the figure above, f = −f(v) v̂, where as before v̂ = v/|v|. Essentially v̂ defines the
direction of travel, and f is always in the opposite direction.

So what is f? All the previous dependencies . . . complex! But, if well below the speed of sound in
the medium, we have a good low-order approximation:
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f(v) = bv + cv2 = flin + fquad (1)

Of course it is obvious from a Taylor series approach this has to work if the velocity is “small enough.”

flin: The first term is due to the viscous drag of the medium, it is proportional to the viscosity of
the medium and the size of the particle.

fquad: The second term is due to having to accelerate the fluid in front of you to get it out of the
way - proportional to the density of the medium and the cross-sectional area of the particle. For a
sphere:

sphere b = βD (2)

c = γD2 (3)

D = diameter; β, γ depend on medium (4)

air at STP β = 1.6× 10−4N · s/m2 (5)

γ = 0.25N · s2/m (6)

Often we can neglect one of the two terms depending on size/speed. Compare the magnitudes:

fq
fl

=
cv2

bv
=
γD

β
v =

(
1.6× 103 s/m2

)
Dv (air at STP only) (7)

Which one dominates depends on Dv - product of size and speed. Examples:

• baseball: D = 7 cm, v = 5m/s (slow): fq/fl ∼ 600 can ignore linear term

• oil drop: D = 1.5µm, v = 5× 10−5m/s, fq/fl ∼ 10−7 can ignore quadratic term

• rain drop: D = 1mm, v = 0.6m/s, fq/fl ∼ 1 we are in trouble. need both.

Tiny & slow: linear dominates. slightly larger but more viscous? still linear. e.g., oil drop in air
and ball bearing in molasses

most everyday projectiles? quadratic dominates.

By the way: fq
fl
∼ Reynold’s number (same magnitude) - crossover from laminar to viscous flow.

Re =
Dvρ

η
=
(
1.6× 103 s/m2

) fq
fl

ρ

η
ρ = fluid density η = kinematic viscosity (8)

fquad dominates when Re is large (turbulent); flin dominates for small Re. We’ll handle the linear
regime first since it is a bit easier mathematically.
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2 Linear Air Resistance

The force of air resistance is f = −bv. If we have only this and gravity, the force balance on a
particle is simple enough∑

F = mr̈ = mg − bv (9)

v

f = −bv

w=mg

x axis

y axis

Air resistance f always acts to oppose the velocity v.

Neither force involves r, so the equation of motion is independent of r (but NOT ṙ or r̈). Noting
r̈ = v̇,

mv̇ = mg − bv (10)

This is a first order equation in v. We can just solve it for v and integrate to get r. With the +y

axis pointing upward, the component form is simple:

mv̇x = −bvx (A) (11)

mv̇y = mg − bvy (B) (12)

These are two uncoupled, linear, first-order differential equations. We can treat them separately,
and they can be integrated. NOT so easy when f ∝ v2, then we have coupled equations.

So we’ll solve these for vx, vy → x(t), y(t) → r(t). But look again. The two component equations
represent entire classes of problems on their own!

A : Any horizontal motion with drag but no gravity, e.g., a car

B : Any vertical motion with drag, e.g., dropped object

2.1 Case A: horizontal motion with drag

We assume the particle is by some means constrained to move on a horizontal surface so the y
motion is irrelevant.
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vf = −bv
x axis

y axis

Air resistance f always acts to oppose the velocity v.

The equation is simple enough: mv̇x = −bvx, which has the form dv
dt = −kv, with k ≡ b/m. We

know this one . . . separate and integrate.

mv̇x = −bvx = m
dvx
dt

(13)

dvx
vx

= −k dt k ≡ b

m
(14)∫

dvx
vx

= −
∫
k dt (15)

ln vx = −kt+ C (16)

vx(t) = Ae−kt rearrange and redefine constant, A ≡ eC (17)

Since it was a first order equation, we expected one boundary condition - A. If we know the initial
velocity v(0) = vx0, then

v(0) = A ≡ vx0 (18)

vx(t) = vx0e
−kt = vx0e

−t/τ where τ =
1

k
=
m

b
(19)

So the particle slows down exponentially with a characteristic decay time (or time constant)
τ = m/b = (inertia)/(drag). We can also see that v → 0 as t→∞, so the thing does stop eventually.

What we should also recognize is that this is the same equation we found for series RC or RL circuits
in intro physics or engineering. If this were a circuit,

series RL R = b, L = m τ =
L

R
(20)

series RC R =
1

b
, C = m τ = RC (21)

+
−V

R1 → b

L1 → m

The LC circuit is perhaps easier to understand: the electrical resistance and air resistance both
serve as dissipative forces, while the inductor and mass serve as the inertia (mass). Check over your
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old course notes, it is the same first-order differential equation, just with different symbols.

We can use the same trick of separating variables and integrating once more to get x(t). We know
vx = ẋ = dx/dt. If we choose our origin to be the particle’s initial position, x(0) = 0, then

x(t) = x(0) +

t∫
0

vx(t
′) dt′ (we should distinguish integration variable and limit) (22)

x(t) = x(0) +

t∫
0

vx0 e
−t′/τ dt′ = 0 +

[
−vx0τe−t

′/τ
]t
0

(23)

x(t) = vx0 τ
(
1− e−t/τ

)
(24)

Now note that

lim
t→∞

x(t) = vx0 τ ≡ x∞ (25)

=⇒ x(t) = x∞

[
1− e−t/τ

]
(26)

Recall the voltage on the resistor in our RL circuit after switching on the voltage source:

VR(t) = V
[
1− e−t/τ

]
τ =

L

R
(27)

So this is something familiar. What do vx and x look like as a function of time?
vx(t)

t

vx0

τ0

x(t)

t

x∞

τ0
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2.2 Case B: vertical motion

Let’s consider an object thrown downward with velocity vy0.

vy0mg

f = −bv

x axis

y axis

An object thrown downward with vy0.

Now we have

mv̇y = mg − bvy (28)

Note we can have mv̇y = mÿ = 0 if mg = bvy, so the drag and weight forces can balance! This is
terminal velocity:

mg = bvy =⇒ mg

b
= vy,ter ≡ vter (29)

For linear drag,

vter =
ρπD2g

6β
(30)

oil drop: D = 1.5µm =⇒ vter ≈ 10−4m/s (31)

mist: D = 0.2mm =⇒ vter ≈ 1m/s (32)

baseball: D = 7.3 cm =⇒ vter ≈ 95mph NOT linear drag (33)

Solve it? Let u = vy − mg
b , which means u̇ = v̇y. This gives

mu̇ = −bu̇ (34)

This is the same equation as before, so the solution is the same. Do it again and back substitute,
with vy(0) = vy0, y(0) = 0, and vter = mg/b. We have

vy = vy0e
−t/τ + vter

(
1− e−t/τ

)
= vter + (vy0 − vter) e−t/τ (35)

From the first term we see that the initial velocity is also damped and that vy approaches terminal
velocity as t→∞. With an initial velocity of zero (dropped object), the velocity looks like this:
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vy(t)

t

vter

τ0

An object dropped with vy0 = 0.

Look again at vy(t), rearranging terms:

vy = vy0e
−t/τ + vter

(
1− e−t/τ

)
(36)

The first term has the particle starting at vy0 but fading away exponentially. The second term starts
at zero and reaches vter as t → ∞. If launched downward with vy < vter, the particle will speed
up until it reaches vter and then continue at a constant velocity of vter. If launched downward with
velocity greater than vter, the particle will slow down until reaching vter and thereafter continue
with terminal velocity.

vy(t)

t

vter

τ0

An object thrown downward with vy0 > vter.

Let’s say we have a dropped object, vy0 = 0. How long does it take to reach terminal velocity, in
terms of the time constant τ?

t % vter

0 0
τ 63

2τ 89
3τ 95

By 3τ = 3m/b, within 95% of vter. For an oil drop, τ ∼ 6µs, so by 20µs it is done. For mist, we
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are basically done in 20µs. Note also since

vter =
mg

b
τ =

m

b
=⇒ vter = gτ (37)

So vter = gτ is the speed an object would acquire in time τ if the acceleration were just g without
air resistance. The time constant τ is thus the characteristic time it would take to reach the same
terminal velocity without air resistance. The smaller τ is, the stronger the influence of air resistance.

Integrate vy once more,

y(t) = vtert+ (vy0 − vter) τ
(
1− et/τ

)
(38)

Combine this with x(t) solution for purely horizontal motion and we have the motion of any projectile
in a linear medium!

x(t) = vx0 τ
(
1− e−t/τ

)
(39)

y(t) = (vy0 ± vter) τ
(
1− et/τ

)
± vtert ± = launch up/down (40)

2.3 Trajectory and range in a linear medium

We have x(t) and y(t) as parametric equations, we can eliminate t to find y(x):

y(x) =

(
vy0 + vter

vx0

)
x+ vterτ ln

(
1− x

vx0t

)
(41)

Too complex to give much insight, but there it is. Here is a plot.

Figure 1: Trajectory with linear air resistance compared to the trajectory in vacuum
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What is the range? it is x when y = 0, or(
vy0 + vter

vx0

)
R+ vterτ ln

(
1− R

vx0t

)
= 0 (42)

This is a mess. The usual trick is to do a Taylor expansion, like ln (1− ε) ≈ −(ε+ 1
2ε

2+ . . .), where
ε = R

vx0t
.

Neglect terms of O(ε3) and higher. Tedium ensues, and you can show

R =
2vx0vy0

g
− 2

3vx0τ
R2 ≈ 2vx0vy0

g
(43)

The first term is the vacuum result we know. The second term is a reduction in range inversely
proportional to τ , and so proportional to the air resistance term b. When τ is large or b is small, so
when air resistance is negligible the range is basically what it is in vacuum.

We can simplify this though, for small air resistance:

R = Rvac

(
1− 4vy0

3vter

)
(44)

This makes it clear that air resistance reduces the overall range, of course. Since vy0 ∝ v, the ratio
of v/vter dictates the loss of range. If v/vter � 1 for the whole flight, air resistance is small. If
v/vter & 1 we almost certainly need air resistance included, and the approximation above for the
range is no good!

2.4 Example

Consider a tiny metal pellet. Now it depends on the material, since vter ∝ ρ:

D = 0.2mm (45)

v = 1m/s (46)

θ = 45◦ (47)

ρ = 16 g/cm3 (gold) (48)

ρ = 2.7 g/cm3 (aluminum) (49)

In vacuum, for either:

R =
2vx0vy0

y
=

2v20 sin θ cos θ

g
≈ 10.2 cm (50)
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With air resistance:

gold
4vy0
3vter

∼ 4× 0.71

3× 0.21
∼ 0.05 5% reduced to 9.7 cm (51)

aluminum 30% reduced to ∼ 7 cm (52)

3 HW problems
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