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1 Charge in a uniform B field

Another interesting case we can handle is a charge in a uniform B field, where the force is a function
of velocity alone. We know the magnetic force law:

F = qv ×B (1)

Assume that B is uniform along the ẑ axis, so B = (0, 0, B), and we have a positive charge q with
velocity v. The equation of motion is then

mv̇ = qv ×B (2)

v = (vx, vy, vz) (3)

B = (0, 0, B) (4)

We can readily compute v ×B:

v ×B =

∣∣∣∣∣∣∣
x̂ ŷ ẑ

vx vy vz

0 0 B

∣∣∣∣∣∣∣ = (vyB,−vxB, 0) (5)

Then the equation of motion gives us three component equations:

mv̇x = qBvy (6)

mv̇y = −qBvx (7)

mv̇z = 0 =⇒ vz = vzo = const (8)

The z equation makes sense: since B only alters components perpendicular to it, along z we
should have motion with constant velocity. It is also clear that we have separate equations for the
components parallel to B (the z component) and the components perpendicular to B (those in the
x− y plane). Now define a parameter ω = qB/m and re-examine the x and y equations.

v̇x = ωvy (9)

v̇y = −ωvx (10)
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The book solves these equations using complex numbers, which is very handy and you should
definitely follow the book’s solution. However, for illustrative purposes we’ll solve these another
way (which is actually what problem 2.54 asks you to do). First, take the time derivative of the
second equation.

dv̇y
dt

= v̈y = −d(ωvx)

dt
= −ωv̇x (11)

But we know from the first equation that v̇x = ωvy, so we have

v̈y = −ωv̇x = −ω2v̇2y (12)

This is the equation for simple harmonic motion, so we immediately know vy oscillates sinusoidally:

vy(t) = vp cos (ωt+ δ) (13)

Thus vy oscillates sinusoidally with frequency ω and phase δ (with δ determined from boundary
conditions) with amplitude vp which is yet to be determined. Now, we should remember vx is
coupled to vy via Eq. 10, which we can use to our advantage:

vx(t) = − 1

ω
v̇y = − 1

ω

d

dt
[vp cos (ωt+ δ)] = vp sin (ωt+ δ) (14)

The equations for vx and vy together are the equation of a circle - the velocity vector in the x− y
plane executes uniform circular motion with angular velocity ω, and the velocity along z is constant
as you recall. Further, we can now figure out what vp is:

v2x + v2y = v2p = v2⊥ (15)

The amplitude vp is just the velocity of the particle in the x− y plane, i.e., the velocity component
perpendicular to B. We can easily integrate both to get position versus time, which will clearly also
give uniform circular motion. Since we also know vz(t) = vzo, we can easily find z as well.

x(t) = xo +
v⊥
ω

cos (ωt+ δ) (16)

y(t) = yo +
v⊥
ω

sin (ωt+ δ) (17)

z(t) = zo + vzot (18)

This x and y equations describe a circle with center at ro = (xo, yo) and radius

r =
v⊥
ω

=
v⊥

qB/m
=
mv⊥
qB

=
p⊥
qB

(19)

Which you should remember as the same result from introductory physics as the uniform circular
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motion of a particle confined to the x− y plane with a constant B = B ẑ. Adding in the fact that
z(t) has linearly increasing velocity, the curve in three dimensions is a helix (or spiral) of pitch 2πvzo

and radius r = mv⊥/qB. Positive charges spiral around B counterclockwise, while electrons spiral
around B clockwise. Below is a picture, with the x and y simple harmonic motion components in
red/green, and the resulting helix in blue.

Figure 1: Helical path of a charge in a constant B field. Code for this drawing by StackExchange user Mark Wibrow,
https: // tex. stackexchange. com/ questions/ 99369/ how-to-plot-circular-polarized-electromagnetic-wave .

2 Example problems

1. Taylor 2.6 For a dropped object experiencing linear air resistance, we know vy(t) = vter(1 −
exp (−t/τ)). Show that for small vy we recover the well-know vacuum result. Show the same for
the position.

Solution: For a dropped object, small v corresponds to small t. For small t, we can approximate
the exponential term by the first few terms of its Taylor series:

ex ≈ 1 + x+
1

2!
x2 + . . . (20)

Using this result, with x = −t/τ and “small t” meaning t� τ so x� 1,

vy ≈ vter
[
1−

(
1− t

τ
+

t2

2τ2

)]
= vter

(
t

τ
− t2

2τ2

)
note τ = vter/g (21)

vy ≈ vter
(
tg

vter
− t2g2

2v2t

)
= gt− g2t2

2vter
(22)

For small t� τ , we can neglect the second term and we have vy = gt. The second term represents
the lowest-order correction to the velocity due to air resistance, and as we should expect it is negative.
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For the position, we can just integrate the two terms we found for vy(t) - there is no real need to
go back to y(t) and approximate again, since we will end up approximating the same exponential
functions. The integral of Eq. 22 is trivial, and

y(t) ≈ 1

2
gt2 − g2t3

6vter
(23)

Again, for t� τ we can neglect the second term, and we recover the usual result. The second term
is again the lowest-order correction due to air resistance.

2. Taylor 2.7 If F is a function of v alone (F = F (v)), then you should be able to show

t = m

v∫
vo

dv′

F (v′)
(24)

Solution: We just need to write down the equation of motion, separate variables, and integrate.

mv̇ = F (v) = m
dv

dt
(25)

dt = m
dv

F (v)
(26)

t∫
0

dt′ =

v∫
vo

m
dv′

F (v′)
(27)

t = m

v∫
vo

dv′

F (v′)
(28)

In the case F = Fo, i.e., a constant force, we find

t =

v∫
vo

m
dv′

Fo
=
m(v − vo)

Fo
=⇒ Fot = m(v − vo) = ∆p (29)

This is just conservation of momentum - the impulse given by the force (Fot) must equal the change
in the particle’s momentum. 3. Taylor 2.39 (a) What if you have quadratic drag and friction?

Let m = 80 kg, c = 0.20N/ (m/s)2, with a constant force of friction of 3N. (b) If the particle starts
with vo = 20m/s, how long does it to slow down to 15, 10, and 5m/s?

Solution: Take the force of friction to be constant, ffr = b, and the quadratic drag force to be
fq = −cv2. We write down the equation of motion, separate variables, and integrate as usual.
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mv̇ = −cv2 − b = m
dv

dt
(30)

−dt = m
dv

cv2 + b
(31)

−t = m

v∫
vo

dv

b/m+ (c/m)v2
=

√
m2

bc
arctan

(√
mc

mb
v

)∣∣∣∣∣
v

vo

(32)

t =
m√
bc

[
arctan

(
vo

√
c

b

)
− arctan

(
v

√
c

b

)]
=

m√
bc

arctan

(√
b

c

[
v − vo)

1 + cvvo/b

])
(33)

The last expression relies on an identity for arctan a− arctan b, viz.i

arctan a− arctan b = arctan

(
a− b
1 + ab

)
(34)

Given vo = 20m/s and the other parameters given, we can find the time it takes to slow down to
15, 10, and 5m/s easily. May as well find the time to stop as well, and a plot for good measure.

v ∆t

15m/s 6.34 s
10m/s 18.4 s
5m/s 48.3 s
0m/s 143 s
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vo = 20m/s

3 Go over homework problems

ihttps://proofwiki.org/wiki/Difference_of_Arctangents
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