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1 Time-dependent potential energy

Sometimes we need to consider time-dependent forces, F(r, t). The force may still satisfy ∇×F = 0.
However, it does not satisfy our first condition for a conservative force, viz., the force should be a
function of position alone. However, can still define U(r, t) such that F = −∇U since ∇× F = 0.
The consequence of a time-varying U is that mechanical energy will no longer be conserved.

Consider one concrete example from the text, a single charge q near a van de Graaff generator whose
conducting globe has built up a charge Q that is leaking away to the surrounding air, so Q = Q(t).

Figure 1: Test charge q near a van de Graaff generator.

The force on q is now explicitly time-dependent because Q is: F = kqQ(t)
r2

r̂. Since F is still the
Coulomb force, it still satisfies ∇ × F = 0, meaning we can write F as the gradient of a scalar
function, i.e., the potential energy:

U(r, t) = −
r∫

ro

F(r′, t) · dr′ (1)

F(r, t) = −∇U(r, t) (2)

So far so good! But what are the consequences? Let’s look at the time variation of kinetic energy
again.

dT =
dT

dt
dt = (mv̇ · v) dt = F · dr (3)
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Since U(r, t) = U(x, y, z, t), we can also find dU .

dU =
∂U

∂x
dx+

∂U

∂y
dy +

∂U

∂z
dz +

∂U

∂t
dt = −F · dr +

∂U

∂t
dt (4)

The first three terms in the second expression are ∇U ·dr. From our previous results, we know that
∇U · dr = −F · dr, so when we add dU + dT , the first three terms will cancel!

dT + dU = d(T + U) = F · dr− F · dr +
∂U

∂t
dt =

∂U

∂t
dt (5)

(6)

Clearly, mechanical energy is only conserved when ∂U/∂t = 0, that is, when U is independent of
time.

Why is that? Back to the van de Graaff example.

• hold q stationary while charge Q leaks away

• T doesn’t change for q, but U does because Q is decreasing

• =⇒ T + U 6= constant for q

• problem: we have an open system, which excludes Q.

• gain of thermal energy for surrounding air as discharge heats it up

• no problem if system = q + Q + air

U is dependent on time when mechanical energy is transferred to another kind or to other bodies
outside the system of interest. Can alleviate this in some cases by defining the system more cleverly,
or we have to account for the time-dependent work done by external agents that transfer energy
into or out of our system.

2 One Dimensional Systems

Need not be straight line paths, just a situation where the only directions are forwards → and
backwards ←. Can be a curved path, or any situation where 1 variable is enough to describe the
motion (e.g., pendulum). In this case

W (x1 → x2) =

x2∫
x1

Fx(x) dx (7)
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If F is conservative, (i) F depends only on the coordinate x, and (ii) W is independent of path. In
1D, statement (i) implies statement (ii), so (ii) is a redundant condition!

Figure 2: Two ways to get from A to B in 1D

In the figure above, we can go from A to B directly, or via point C. The two paths we can label
“AB” and “ABCB”. What is the work done on the more complicated ABCB path? We can break
it up into segments. Since F is conservative, the work depends only on the starting and ending
coordinates.

W (ABCB) = W (AB) +W (BC) +W (CB) (8)

If F depends only on position, then it must be true that W (BC) = −W (CB), which gives

W (ABCB) = W (AB) (9)

So long as F depends only on position in 1D, the work on any path from A to B is the same. Think
about the force of gravity - you already know the work depends only on the change in y coordinate
and nothing else. Rotate the figure above by 90◦ and it is a problem about a ball tossed in the air -
the ball has the same energy when it first reaches B as it does when it eventually comes back down
to point B (in the absence of air resistance at least, but that would be a force that does not only
dependent on position anyway).
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3 Graphs of U in 1D

We already know some examples of U in one dimension: for a spring, U(x) = 1
2kx

2. The relation to
force is also simple in 1D: Fx = −dU/dx. Making plots of potential energy can be useful in figuring
out what the system is doing.

Figure 3: Potential landscape in 1D

For one, the force is “downhill” on the U(x) graph. In the figure above, at points x1 and x2 the force
is downhill, to the left and right respectively. At both points the force tries to move the particle to
a lower U .

At points x3 and x4, dU/dx = 0, so we have an equilibrium point. At x3, d2U/dx2 > 0, the curve
is concave up, and we have a stable equilibrium. For any displacement, the force acts in opposition
to bring the system back to equilibrium. In general the particle will oscillate about x3 once displaced.

At x4, d2U/dx2 < 0, the curve is concave down, and the equilibrium is unstable. Any tiny displace-
ment leads to a force in the same direction, moving away from equilibrium.

What if the particle is moving? Then the particle has some fixed energy E = T + U . That means
the maximum value of U is restricted to U = E, at which point T = 0 and the particle must come
to a stop.

Figure 4: A moving particle in 1D
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From the graph above, we can see that the particle reaches maximum U at points a and c, where
it must have T = 0. The particle cannot go outside the region x ∈ [a, b] because it doesn’t have
enough energy to go higher. So x < a and x > c are inaccessible and the particle is trapped. If
displaced it will oscillate about point c.

What if the particle has an energy E higher than the tallest “hill”? It will continue in the same
direction as its initial velocity indefinitely.

One example would be a molecular bond, like H bound to Cl in HCl (Cl is so much heavier than
H we can consider its position to be a fixed point that the H atom moves around). Note the figure
below.

Figure 5: Radial potential for a molecule

• As r → 0, U → ∞, and the atoms repel. They can never touch, since the energy required
would be infinite.

• If E > 0, the H atom can escape to ∞ and the molecule breaks

• If E > 0 you can bring the H atom in to a radius r = a, then it is repulsed and escapes back
to ∞

• If E < 0 H is bound to Cl between rb and rd, with an equilibrium position at rc.

• Any concave upward potential is approximately parabolic for small displacements from equi-
librium, which means the H atom acts like a harmonic oscillator for small displacements from
equilibrium - the molecule has a characteristic vibrational frequency determined by the masses
and bond strength!
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4 Complete solution of motion in 1D

Remarkably, in 1D we can completely solve the motion from potential alone. Start with energy
conservation and solve for ẋ.

T =
1

2
mẋ2 = E − U(x) (10)

ẋ(x) = ±
√

2

m

√
E − U(x) (11)

We explicitly show here that ẋ is a function of position x. Noting that ẋ = dx/dt, we know
dt = dt/ẋ. This will let us separate and integrate, as on the homework.

t∫
0

dt′ = t =

x∫
xo

dx′

ẋ′
(12)

t =

x∫
xo

dx′

ẋ′(x′)
=

√
m

2

x∫
xo

dx′√
E − U(x′)

(13)

The integral can always be solved numerically given some initial conditions, and you showed in the
homework that it works analytically for the simple harmonic oscillator. So in fact the whole motion
is solved for any 1D problem, so long as we can specify a potential U(x).

We can check the result for free fall. Let xo = vo = 0, i.e., a particle dropped from rest at the origin.
Then U(x) = −mgx and E = 0, so

t =

√
m

2

x∫
0

dx′√
−U(x′)

=

x∫
0

dx′√
2gx′

=

√
2x

g
=⇒ x =

1

2
gt2 (14)
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5 Curvilinear 1D Systems

Let s be the distance covered along the path. Clearly the speed is then ṡ, so T = 1
2mṡ

2.

Figure 6: A curvilinear 1D path

The net force is more complicated, there are 2 parts: (1) acceleration along the path (speeding
up/slowing down), and (2) acceleration perpendicular to the path that allows turning but doesn’t
change |v|. It is easy to see that long the path,

Ftang = ms̈ = −dU
ds

(15)

If you know the equation for the path and the potential energy function, you know the force.
E = T + U(s) is constant. There must also be a normal component to the force to cause turning.

• Fc is a force of constraint and fully specified by s and ṡ

• Fc does no work since it is by construction perpendicular to the path heading.

You can show for some path described by y(x) in 2D that

∆s =

f∫
i

√
1 +

(
dy

dx

)2

dx (16)

(17)

At any given point along the path, there are two directions: normal and tangential, and they both
have unit vectors:
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ŝ = T̂ =
v

|v|
(18)

N̂ =
dT̂/ds

|dT̂/ds|
(19)

Figure 7: Tangential and normal unit vectors along a path, and the inclination angle ϕ.

ϕ

T̂
N̂

ϕ

T̂N̂
ϕ

sinϕ

− sinϕ

cos ϕ

cos ϕ

Basically, T̂ points in the direction you are heading, N̂ points in the direction your turning, and
the two are perpendicular at any point on the curve specifying s. The full acceleration is

a(t) =
d2s

dt2
T̂ + κ|v|2 N̂ =

d2s

dt2
T̂ +

|v|2

R
N̂ ≡ aN T̂ + aT N̂ (20)

Here κ is the curvature of the path at some point. If the path is described by y(x):

κ =

∣∣∣∣d2ydx2
∣∣∣∣[

1 +

(
dy

dx

)2
]3/2 (21)

One can also develop an equivalent expression for curvature based on the parametric expression for
the same path, y(t) and x(t).

κ =

∣∣∣∣dxdt d2ydt2 − dy

dt

d2x

dt2

∣∣∣∣[(
dx

dt

)2

+

(
dy

dt

)2
]3/2 (22)

The generalized radius of curvature is R = 1
κ , and for a circle this is just the radius. For a more
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complicated curve, you can imagine R is the radius of a circle that would best fit the curve at that
point. Back to the expression for acceleration (Eq. 20): the first term (T̂ component) is just the
rate at which your speed is changing along the path, and the second term (N̂ component) is a
generalization of the centripetal force from circular motion, ac = v2/R.

Qualitatively? The N̂ component says for a given speed the force required to turn is higher for
sharper curves, and at a given curvature higher for a higher speed.

6 Making things one dimensional

Can make many systems that look complicated into 1D systems. Example - Atwood’s machine: for
a fixed length rope, only one coordinate is needed.

Figure 8: Atwood’s machine: only the coordinate x is needed to determine the motion of the system, so this is a 1D problem.

Example 4.7 from the book - block balancing on a cylinder: the single coordinate θ determines the
position of the block, so this is actually a 1D problem!

Figure 9: Box balancing on a cylinder

The vertical displacement h has three parts: the vertical part of the cylinder radius mgr cos θ, the
vertical part of the distance b which is mgb cos θ and the vertical distance from B to C, which is the
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arclength the system is displaced through from θ = 0, or rθ sin θ. Thus,

U = mgh = mgr cos θ +mbg cos θ + rθ sin θ = mg [(r + b) cos θ + rθ sin θ] (23)

You can find dU/dθ easily enough to figure out the equilibrium position:

dU

dθ
= mg [rθ cos θ − b sin θ] (24)

dU/dθ vanishes at the equilibrium position θ = 0, just as you would expect. What is the stability
of the equilibrium? The sign of the second derivative tells us:

d2U

dθ2
= mg (r − b) (25)

So long as the cube is smaller than the cylinder (r > b) the equilibrium is stable; if the cube is
larger (r < b) it is unstable and the cube will fall off with the slightest perturbation. Pretty much
what you would expect.
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