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Motion along a curved path
Early on, we learned how to describe two-dimensional (2D) motion in terms of a position vector ~r(t) that
gives a vector pointing from our coordinate system origin (O) to the current position of an object. In terms
of that position vector, we defined velocity and acceleration vectors as successive time derivatives of the
position vector with respect to time. Any of those three vectors could be defined in terms of components in
our chosen coordinate system. For instance, if we choose an x− y cartesian coordinate system, the position,
velocity, and acceleration vectors have x and y components. Using unit vectors ı̂ and ̂ to represent unit-
length movements along the x and y axes, respectively, we can write both general (coordinate-free) and
specific (component form) expressions for all three vectors:

~r(t) = x(t) ı̂ + y(t) ̂

~v(t) = d~r
dt

= dx

dt
ı̂ + dy

dt
̂ = vx ı̂ + vy ̂

~a(t) = d~v
dt

= d2~a
dt2

= d2x

dt2
ı̂ + d2y

dt2
̂ = dvx

dt
ı̂ + dvy

dt
̂ = ax ı̂ + ay ̂ (1)

Within a particular coordinate system, we have a set of parametric equations for the position. In this ex-
ample, the x and y motion are decoupled, and the time evolution of each coordinate is separately described
by x(t) and y(t).

1 Distance covered along an arbitrary path
We left open some seemingly straightforward questions, however. How far does an object travel along the
path described by ~r(t)? What is its heading, or direction, at any particular instant? More precisely, we can
easily calculate the displacement ∆~r between any two times ti and tf , and we can easily calculate the angle
of the particle’s path with respect to the x axis at any instant:

∆~r =~r(tf )−~r(ti)

θi = tan−1
[
y(ti)
x(ti)

]
= tan−1

[
vy(ti)
vx(ti)

]
(2)

However, we do not have a way to calculate the total distance covered in getting from ~ri to ~rf , nor do we
have a nice way of describing how much an object’s orientation changes with time. Specifically, we would
like to know the actual length of the path covered, not just the net distance between two points, and we
would like to know how “curvy" the path is, how much orientation changes per unit length.



Let us take a fairly arbitrary example, a particle traveling on a generic path s described by the position
vector ~r(t), as shown below. Now let’s look at distance between two positions separated by an infinitesimal
time step dt, viz., ~r(t) and ~r(t+ dt). In that time interval dt, our particle will have covered some tiny length
of the path ds.
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Figure 1: A general path s described by the position vector ~r(t). left: The displacement between two successive positions ~ri=~r(t)
and ~rf = ~r(t + dt). right: The actual distance covered along the path s between t and t + δt is ds. If dt is very small, ds is
approximately a line segment.

The displacement between the successive positions d~r is easily calculated, as above. Let us say over the
time interval dt the particle’s x position changes by an amount dx, and its y position changes by dy. The
displacement is then

~ri =~r(t) = xi ı̂ + yi ̂

~rf =~r(t+ dt) = (xi + dx) ı̂ + (yi + dy) ̂

d~r =~r(t+ dt)−~r(t) = dx ı̂ + dy ̂ (3)

This is not the same as the actual distance covered along the path s. The displacement represents the
shortest possible distance between ~r(t) and ~r(t + δt), but the actual distance covered depends on s itself,
and how much it deviates from a straight line between t and t + dt. If we make dt small enough, however,
the tiny segment of the path covered over that time interval ds will be approximately a line segment. In that
case, we can estimate the path length ds from the displacement. If we let dt→ 0, the relationship is “exact.”

(ds)2 = |d~r|2 = (dx)2 + (dy)2 (4)

From now on, we will assume that dt is infinitesimally small. This expression gives us the path length ds
over an infinitesimally small time step dt, which is nothing more than finding the distance between points
(x, y) and (x + dx, y + dy), provided dx and dy are small enough. We could put this relationship another
way as well: ∣∣∣∣d~rds

∣∣∣∣ = 1 (5)



Basically, the change in displacement is identical to the change in distance for very small displacements.
This does lead us to an important result, however: we can define a unit vector which always points along
the direction of the instantaneous displacement, a unit vector tangent to the curve.

T̂ = d~r
ds

= dx

ds
ı̂ + dy

ds
̂ (6)

This unit vector T̂ – and it must be a unit vector from Eq. 5 – always gives us the direction of the particle’s
trajectory at a given time or position, which will be very useful shortly.

Given the distance ds covered in a time interval dt, we can also find the particle’s speed and velocity. If the
particle follows the position vector

~r(t) = x(t) ı̂ + y(t) ̂ (7)

then the velocity is easily found:

~v = d~r
dt

= dx

dt
ı̂ + dy

dt
̂ (8)

The speed of the particle can be calculated either by finding |~v|, or dividing the distance ds by the time
interval dt:

|~v|2 =
∣∣∣∣dsdt
∣∣∣∣2 =

(
dx

dt

)2
+
(
dy

dt

)2

|~v| = speed =
∣∣∣∣dsdt
∣∣∣∣ =

√(
dx

dt

)2
+
(
dy

dt

)2
(9)

The velocity ~v, which is always directed along the curve, can now be nicely expressed in terms of the speed
|~v| and our tangent vector T̂:

~v = d~r
dt

= d~r
ds

ds

dt
= ds

dt
T̂ = |~v|T̂ (10)

This is an important, if perhaps obvious result: we can describe the particle’s motion completely if we know
its current speed |~v| and orientation T̂.

Armed with our new expressions, we can readily calculate the actual distance covered over an arbitrary curve
described by ~r(t). The actual distance covered is calculated by integrating the infinitesimal displacements
from some starting time ti to some ending time tf :

sf − si = path length =
∫ [

ds

dt

]
dt =

tf∫
ti

√(
dx

dt

)2
+
(
dy

dt

)2
dt =

tf∫
ti

√
v2
x + v2

y dt =
tf∫
ti

|~v| dt (11)

This is exactly analogous to what we did for one-dimensional motion – the change in position is found by
integrating velocity over a time interval



xf − xi = distance covered =
tf∫
ti

vx dt =
tf∫
ti

[
dx

dt

]
dt (12)

For the case of motion along a parametric curve described by x(t) and y(t), we can now readily calculate the
instantaneous velocity and speed at any point of the path, and further, we can find the actual distance along
the curve between any two points. What if we don’t know the curve parametrically, but have an explicit
form y(x)? In that case, we can use the following substitutions:

x = t and y = f(x)

dx = dt (13)
dx

dt
= 1

dy

dt
= dy

dx

dx

dt
= dy

dx
(14)

This turns our equation for the path length into something a little nicer looking, giving the length of a curve
between two points xi=x(ti) and xf =x(tf ):

sf − si = length of curve between xi and xf =
xf∫
xi

√
1 +

(
dy

dx

)2
dx (15)

As an aside, one can also do the same for a curve defined in polar coordinates, r=f(θ). We will only record
the result, for completion:

sf − si = length of curve between angles α and β =
β∫
α

√
r2 +

(
dr

dθ

)2
dθ (16)

What we have really done, in fact, is turn any motion problem along any strange path into an equivalent
one-dimensional problem. The price we pay is having to compute what is often a very nasty integral . . .

2 Curvature of a path
We can now determine the distance covered along an arbitrary path, which effectively turns any motion
problem into a one-dimensional version, but this is not the whole story. For instance, you probably realize
that there is a difference between traveling 60mi/hr along a straight line and taking a sharp curve at 60mi/hr.
Going around the curve, we feel a side-to-side acceleration, which increases as our speed increases and the
radius of the curve decreases. Clearly, at a given speed the curvature of the path we are one has an influence
over the total acceleration experienced. What we require is a reasonably-rigid mathematical description of
curvature.

2.1 Defining curvature

Qualitatively, we might compare speed and curvature, by saying that the latter is a measure of how much
our direction changes over a given change in position:



speed – change in position with time
curvature – change in direction with position

How do we specify how an object’s direction changes with position? We have already come up with a way to
specify the direction of travel, our unit vector T̂. This can be used to define curvature, as we will see below.
However, it is a bit more illustrative to start simply. We will define the orientation at a particular point on
a curve to be the angle ϕ that a tangent line at that point makes with the x axis, as shown below:
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Figure 2: We can describe the curvature of a path at any point in terms of how quickly the orientation of a tangent line changes
with position. Given the angle ϕ a tangent line makes with the x axis, curvature is dϕ/ds. Since the slope of the curve at any point
is tanϕ, curvature is related to how rapidly the slope of the path changes with position.

The higher the curvature in a region, the more rapidly that the tangent angle ϕ changes with position. Based
on our definition of curvature above, we want to know how much ϕ changes for an incremental distance along
the curve, or

curvature ≡ κ =
∣∣∣∣dϕds

∣∣∣∣ (17)

Based on the equation above, curvature must have the units of inverse length. Another convenient quantity
is the radius of curvature, R≡1/κ. The radius of curvature at a given point on a curve has a simple physical
interpretation: what is the radius of a circle that approximates the curve near that point? Clearly, for a
circle, the radius of curvature is just the radius of the circle. The radius of curvature is in essence a way of
locally approximating a curve by segments of a circle. The smaller the radius of the circle, the “tighter” the
curve is, and the larger the curvature.

Writing Eq. 17 another way, if we move an incremental distance ds along a path, we expect the orientation
to change by an amount |dϕ|=κ|ds|. We can bet a better feeling for curvature if we remember that tanϕ is
just the slope of the curve:

tanϕ = dy

dx
= slope (18)

What we are really saying, in a way, is that high curvature corresponds to a region where the slope changes
rapidly with position. Fine. We have a definition of curvature, but thus far no way to actually calculate it.



2.2 Calculating curvature

Based on our definition of curvature in Eq. 17, if we apply the chain rulei we can make a little progress:

dϕ

ds
= dϕ

dx

dx

ds
= dϕ/dx

ds/dx
(19)

The denominator, ds/dx, we already know – it is trivially found by differentiating Eq. 15:

ds

dx
=

√
1 +

(
dy

dx

)2
(20)

That leaves only the numerator, dϕ/dx. With the benefit of hindsight, we can use the one relationship we
already have involving both ϕ and x, Eq. 18, and differentiate it with respect to x:

tanϕ = dy

dx
d

dx
(tanϕ) = d

dx

(
dy

dx

)
(
sec2 ϕ

) dϕ
dx

= d2y

dx2

dϕ

dx

(
1 + tan2 ϕ

)
= d2y

dx2

dϕ

dx
= d2y

dx2
1

1 + tan2 ϕ
=

d2y

dx2

1 +
(
dy

dx

)2 (21)

Combining this with Eqs. 17, 19, and 20, we can calculate the curvature from the explicit equation for a
path y(x) and its derivatives:

κ =
∣∣∣∣dϕds

∣∣∣∣ =

∣∣∣∣∣
d2y

dx2

1 +
(
dy

dx

)2
1√

1 +
(
dy

dx

)2

∣∣∣∣∣ =

∣∣∣∣d2y

dx2

∣∣∣∣[
1 +

(
dy

dx

)2
]3/2 (22)

One can also develop an equivalent expression for curvature based on the parametric expression for the same
path, y(t) and x(t).

κ =

∣∣∣∣dxdt d2y

dt2
− dy

dt

d2x

dt2

∣∣∣∣[(
dx

dt

)2
+
(
dy

dt

)2
]3/2 (23)

This will be easier to deriveii once we’ve done a few other things. It is a nice exercise to convince yourself
iWe also need to assume that dx/ds exists, ds/dx 6=0, and ds/dx=1/(dx/ds). For the sort of well-defined functions we deal

with, representing physical quantities, this does not represent a problem. We will be a little slapdash with some points like
this, knowing that our mathematician colleagues have worked out the formalities already.

iiAn example derivation similar to our method above can be found at http://mathworld.wolfram.com/Curvature.html

http://mathworld.wolfram.com/Curvature.html


that it is true, however ,

3 The normal unit vector
So far, for an arbitrary path – parametrically or explicitly defined – we can now define and calculate the
path length, speed, and curvature. Further, we have a handy unit vector T̂ that tells us at any point on the
path, for any instant in time, what the direction of travel is. What else do we need to fully describe motion
along this path? Only one more thing: a corresponding unit vector that tells us in which direction we are
turning. It is not enough to know the degree of curvature, we need to know the orientation as well!

Fortunately, there is a simple way to describe the direction we are turning for a given path. Recall T̂ is a
unit vector which is always tangent to the object’s path, defined by

T̂ = d~r
ds

= dx

ds
ı̂ + dy

ds
̂

An equivalent definition of T̂ results from simply saying that we want a unit vector pointing along the
current velocity. That is, take the current velocity vector, and divide by its magnitude to come up with a
unit vector:

T̂ = ~v
|~v| (24)

If we want to know the direction we are turning, it is sufficient to find a unit vector N̂ which is always
normal to T̂. This gives two possible directions, and we pick the one that describes the direction the path
is curving toward, rather than the direction the path is curving away from. This is probably easier to grasp
graphically:
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Figure 3: Upper: at any point on the curve, we can define a unit vector T̂ that points tangentially along the curve in the direction
of travel. We now define a unit vector N̂ which is perpendicular to T̂ and points in the direction the path is turning. Lower: Given
our expression for T̂, simple geometry lets us determine N̂.

Thus, given T̂ and a particular curve, N̂ is strictly defined. For a circular path, for instance, N̂ would always
point toward the center of the circle, while for a parabolic path resulting from free-fall motion, N̂ always
points toward or parallel to the ground.



From the geometry in the lower portion of Fig. 3, we can already figure out the component form of N̂. It
must be

N̂ = − sinϕ ı̂ + cosϕ ̂ (25)

It is easy to verify that |N̂|=1, and that T̂ · N̂=0 (meaning that T̂ and N̂ are always perpendicular). An
equivalent definition of N̂ is based on our earlier notion that N̂ should tell us the direction we are turning.
More precisely, this means that N̂ should represent the change in T̂ as one goes an incremental distance ds
along the path. Since T̂ itself tells us the direction of the instantaneous velocity, the change in T̂ with ds
tells us how rapidly the direction of the velocity changes along the curve. Mathematically, this is just

N̂ =

dT̂
ds∣∣∣∣dT̂
ds

∣∣∣∣ (26)

Here of course we remembered to divide dT̂/ds by its magnitude to ensure that we created a unit vector.

4 Acceleration along a curved path
Now we have everything we need to describe motion along a perfectly arbitrary path.iii We can, for a given
trajectory, find the path length, velocity, and curvature. At a given point, we can precisely determine the
direction of travel, the turning direction, and even how rapidly the turn is being executed. So what!iv

The Big Deal here is that now we can turn motion along any path into an equivalent one-dimensional
problem. That is, all motion problems are one-dimensional. How? Let us simply calculate the velocity and
acceleration for an arbitrary path ~r(t), and it will be apparent. Given a path ~r(t), we already know the
velocity from Eq. 10:

~r(t) = x(t) ı̂ + y(t) ̂

~v(t) = d~r
dt

= ds

dt
T̂ (27)

Using our new machinery, the velocity’s magnitude is just the speed, and its direction is T̂. How about the
acceleration? We just differentiate the velocity with respect to time, and apply the chain rule:

~a(t) = d~v
dt

= d

dt

(
ds

dt
T̂
)

= d2s

dt2
T̂ + ds

dt

dT̂
dt

= d2s

dt2
T̂ + ds

dt

dT̂
ds

ds

dt
(28)

Now we have to be careful that T̂ is a local quantity, which changes along our path. It is neither constant in
time, nor it is constant along the path s. Using the cartesian expression for T̂, Eq. 6, it is easy to calculate

iiiWith the caveats that the path must be continuous, its spatial derivatives must be continuous, etc.
ivWe have also confined ourselves to two dimensions. It is not a big trick to extend these ideas to three dimensions. You will

probably do this in a future calculus class.



dT̂
ds

= d

ds
(cosϕ ı̂ + sinϕ ̂) = −dϕ

ds
sinϕ ı̂ + dϕ

ds
cosϕ ̂

= dϕ

ds
(− sinϕ ı̂ + cosϕ ̂) = dϕ

ds
N̂ (29)

Putting it all together,

~a(t) = d2s

dt2
T̂ +

(
ds

dt

)2
dϕ

ds
N̂ (30)

Now we can make two important identifications: first, ds/dt is nothing more than the speed along the path,
|~v|; second, the quantity dϕ/ds is just the curvature κ. Finally,

~a(t) = d2s

dt2
T̂ + κ|~v|2 N̂ = d2s

dt2
T̂ + |~v|

2

R
N̂ ≡ aN T̂ + aT N̂ (31)

Note that the second form uses the radius of curvature R≡ 1/κ. There are two terms to the acceleration:
one parallel to the path (aT ), and one perpendicular to the path (aN ). The first is the acceleration along
the path (the T̂ direction), and it depends only on the change in speed with time, d2/dt2. This is nothing
new – in one dimension, the acceleration is precisely the same. Given a path x(t), the acceleration is d2x/dt2

along the x direction.

The second term is new, however. It represents an acceleration perpendicular to the path (the N̂ direction),
or a side-to-side acceleration as one is going around a curve. This is known as centripetal acceleration, accel-
eration which has nothing to do with changing speed, but results only from changing direction. The larger
the curvature of the path (or the smaller the radius of curvature, the “tighter” the turn), and the larger
the speed along the path, the larger the side-to-side acceleration is. This is quite familiar. Taking a sharp
turn at 60mi/h is a very different experience than taking the same turn at 30mi/h, and at a given speed, a
tighter corner certainly gives a larger side-to-side acceleration. Later, when we associate acceleration with
force, this will take on new meaning.

Just so it sinks in, let us reemphasize what this second term means: the faster you take a given curve, the
larger the side-to-side force, and the tighter the curve at a given speed, the larger the side-to-side force.
Acceleration can result from velocity changing direction only, not just velocity changing magnitude. If the
magnitude of velocity is the same (constant speed), but its direction changes rapidly, there is a large side-
to-side acceleration but none along the path. If the magnitude of velocity changes rapidly, but the path is
straight, there is a large acceleration along the path, but none side-to-side.

So what have we really done? We have found that motion along a curved path can be described just like
one-dimensional motion, provided we define a local coordinate system defined by the unit vectors T̂ and N̂.
Rather than defining a global x − y coordinate system, we change our coordinate system at every instant
to align with the path we are on. This local description of geometry and motion is something that you will
encounter more and more in future physics courses. At any instant in time, however, the local unit vectors
T̂ and N̂ are just as good as ı̂ and ̂ – they are orthogonal (perpendicular), and the acceleration components
behave just like you would expect:



|~a|2 = a2
T + a2

N and θT = tan−1
(
aN
aT

)
(32)

5 A few loose ends
We can quickly derive a few other interesting relationships. First, consider ~v×~a. Using our general expression
for ~a from Eq. 31,

~v×~a = ~v×
(
d2s

dt2
T̂ + κ|~v|2 N̂

)
(33)

The vector product × is distributive, and scalar multiplication is communtative, so this is really

~v×~a = d2s

dt2
~v× T̂ + κ|~v|2 ~v× N̂ (34)

By definition, T̂ points along the direction of ~v, so the two vectors are parallel. Therefore, their vector
product is zero. Thus,

~v×~a = κ|~v|2 ~v× N̂ (35)

The angle between ~v and N̂, by construction, is 90◦ – they are always perpendicular. Worrying only about
magnitudes, their cross product is then |~v||N̂|= |~v|, since sin 90◦=1 and |N̂|=1. Thus,

|~v×~a| = κ|~v|3 (36)

This gives us an alternative, coordinate-free expression for the curvature κ in terms of ~v and ~a alone:

κ = |~v×~a|
|~v|3 (37)

6 Does it make sense? The special case of straight-line and free-
fall motion

Coming soon . . .

7 Does it make sense? The special case of circular motion
Does our expression for curvature make any sense when applied to a familiar path? Let us consider the
special case of motion along a circular path.

Coming soon: applying the general equations to the special case of circular motion . . .



A Curiosities

A.1 Analogy between local coordinates and rotation matricies

It is interesting (and sensible, if you dwell on it) that the normal and tangential unit vectors bear a striking
relationship to a rotation of coordinate systems. Take a normal (x, y) system, and pick a point P (x, y).
After a counterclockwise rotation of θ about the origin, the new coordinates after rotation P ′(x, y) are

[
x′

y′

]
=
[

cos θ + sin θ
− sin θ cos θ

][
x

y

]

Compare this to the unit vectors T̂ and N̂ written in matrix form:[
T̂
N̂

]
=
[

cos θ + sin θ
− sin θ cos θ

][
ı̂

̂

]
(38)

Redefining a local coordinate axis in terms of tangential and normal unit vectors is precisely the same as
rotating an existing x− y system to align with a particular curve at a particular point. The main difference
in our approach is that the tangential and normal vectors are changing in time, and only locally defined.
Rather than rotating coordinates just once to change to a new frame, we do this after every infinitesimal
time increment dt.

There is no need for a global x − y coordinate system, so long as we can always define T̂ and N̂ locally.
As it turns out, the deepest laws of physics we know (such as general relativity) need to be described in
terms of local or differential geometry, similar to what we have done above. Nature has no preferred coordi-
nate system or origin, and it is the local description of geometry and space we introduce here that is required.

You will encounter these ideas again in a future physics course. For the rest of the semester, however, this
is just something we’ll let you ponder ,


