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In your introductory mechanics class, you have no doubt dealt with hydrostatics, and the forces and
energy of fluids which are at rest. The purpose of these notes is to introduce you to the problem
of a moving fluid, and derive the equations relating the pressure and velocity distribution within a
fluid. As a special case, we will derive Bernoulli’s equation for incompressible, viscosity-free fluids,
and as a more general case we will derive the Navier-Stokes equation for incompressible fluids. We
will then apply these results to a (relatively) simple case, the flow of low-speed air past a dense
sphere.

1 The Continuity Equation

The starting pointi for our treatment of fluids will be the derivation of the continuity equation for a
fluid. A continuity equation, if you haven’t heard the term, is nothing more than an equation that
expresses a conservation law. In the case of continuous media, such as a fluid, our conservation law
is conservation of matter. In electromagnetism, one continuity equation expresses conservation of
charge.

Qualitatively, a generic continuity equation for mass reads something like this:

(rate of mass accumulation) + (rate of mass out)− (rate of mass in) = 0 (1)

If you replace “mass” with “charge” or “momentum” you can imagine all sorts of continuity equations
that fall under the general heading of “conservation of stuff.” We can be a bit more precise by
applying our continuity equation to a specific volume of space V , which is defined by a bounding
surface S. In this case, the net rate at which mass accumulates inside V depends on the net rate
at which mass passes through S, either coming in or going out:

(rate of mass accumulation in V ) + (net rate of mass crossing S) = 0 (2)

This is basically just bookkeeping. If the amount of mass in V is static, then it must be true that
the amount of matter entering through S is the same as the amount of matter leaving through S.
If the amount of mass in V is increasing, then there must be a net flow of matter in through S.
Since we wish to deal with continuous substances like fluids, rather than the individual particles we
usually deal with in mechanics, it is most convenient to put our equations in terms of the density
of the substance ρ.

Consider a tiny cube of our substance of dimensions ∆x∆y∆z. The mass of this cube is simply
ρ∆x∆y∆z. If we have a net flow of our substance through this cube, let’s say in the x direction,
how does the mass of the cube change with time? If the substance is incompressible, and the cube

iMuch of this document is based on Ch. 2 of D.R. Poirier and G.H. Geiger, Transport Phenomena in Materials
Processing, TMS, Warrendale, PA, 1994) and Ch. 40-41 of the Feynman Lectures on Physics, vol. II



remains completely full, then the mass doesn’t change, of course. However, in the general case, we
just need to keep track of how much mass is in the cube at any moment, and how much mass enters
and leaves.
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(ρvx)|x (ρvx)|x+∆x

Figure 1: Volume element fixed in space with fluid flowing through it.

We will presume that our cube is nicely aligned along the x, y, and z axes, and that there is a net
flow of our substance with velocity v, as shown in Fig. 1. We will assume that the density of our
substance is constant. If we look first at the faces of the cube perpendicular to the x axis (i.e., the
faces whose area normals are parallel to the x axis), the net flow through the cube along the x axis
can be found be comparing the rate at which mass enters one side and leaves the other. The rate
of mass flowing through the left side face at x is

∂m

∂t

∣∣∣∣
x

=
∂

∂t
(ρV )

∣∣∣∣
x

=
∂

∂t
(ρ∆x∆y∆z)

∣∣∣∣
x

= ∆y∆z (ρvx)

∣∣∣∣
x

(3)

This is just the familiar result that the mass flow rate through a pipe is product of the velocity of
the flow, the fluid density, and the pipe’s cross-sectional area. In the same manner, we can find the
flow rate through the right side face at x+ ∆x,

∂m

∂t

∣∣∣∣
x+∆x

= ∆y∆z (ρvx)

∣∣∣∣
x+∆x

(4)

We can proceed similarly for the other two pairs of faces perpendicular to the y and z axes, and then
add up all the terms for fluid entering or leaving the cube to come up with a mass balance. If, when
we add up the rates for all the sides, we have a non-zero result, then we must be either accumulating
mass inside our cube, or it is experiencing a net loss in mass. Either way, the accumulation in mass
inside our cube of constant volume can only reflect a change in density, and since we consider a



constant volume ∆V = ∆x∆y∆z,

(mass accumulation) =
∂m

∂t
=
∂(ρV )

∂t
= ∆x∆y∆z

∂ρ

∂t
(5)

Our mass balance is then simply relating this rate of mass accumulation to the net flow through
the cube:
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(6)

Next, we can divide by ∆x∆y∆z and take the limit of infinitesimal dimensions. Recalling the
definition of the derivative, we arrive at the continuity equation:

∂ρ

∂t
= −

(
∂

∂x
ρvx +

∂

∂y
ρvy +

∂

∂z
ρvz

)
= −∇ · (ρv) (general continuity equation) (7)

In many situations, such as the flow of air at very low velocities or the flow of water in general, we
may assume to a good approximation that the fluid has approximately constant density (i.e., it is
incompressible). If that is the case, then ∇· (ρv) = ρ∇·v, and ∂ρ/∂t = 0 since if the fluid’s density
is constant it can’t vary with time. This leads us to:

∇ · v = 0 (continuity equation, incompressible fluid) (8)

As a comparison, the equivalent continuity equation in electromagnetism is conservation of charge,
which you might have seen:

∂ρ/∂t+∇ · j = 0 (9)

where ρ is charge density and j current density. In this case, the continuity equation states that
the charge density in a region can only change if there is a net flow of charge (a current) into or out
of that region. The analog of an incompressible fluid in electromagnetism is electrostatics, or no net
motion of charge, which means the continuity equation is simple ∇ · j = 0. Pushing the analogy a
bit further, the analog of electric current density j in a fluid is a mass current ρv, the net transport
of mass through a unit area.

For the most part, in this document we will assume that the fluid density is constant,
and treat only incompressible fluids. This restriction is reasonable for a myriad of practical
situations, but it will not allow us to consider, e.g., density waves such as sound propagation. How



good is the approximation? Compressibility is defined as

β = − 1

V

∂V

∂P
(10)

That implies δV/V ∼ βδP . For water at 0◦C, β ≈ 5 × 10−10 Pa−1, which means that for a 1%
change in relative volume we require a pressure of 5× 107 Pa, or about 500 atm. For most practical
purposes, we can therefore consider water and similar fluids to be incompressible. ii

1.1 The Continuity equation in spherical coordinates

Using the vector form of the continuity equation, we can reformulate it for different coordinate
systems relevant to specific problems by expanding the divergence operator ∇· appropriately. In
spherical coordinates, we have

∂ρ

∂t
+

1

r2

∂

∂r

(
ρr2∂vr

)
+

1

r sin θ

∂

∂θ
(ρvθ sin θ) +

1

r sin θ

∂

∂ϕ
(ρvϕ) = 0 (11)

Our main problems of interest are the slow flow of a fluid past a dense sphere, and the flow through
a pipe. If the fluid flow is along the z axis, the problem is symmetric about the z axis, and we may
neglect the ϕ components of velocity. In other words, the problem is essentially two-dimensional,
thanks to the rotational symmetry about the z axis. In this special case,

∂ρ

∂t
+

1

r2

∂

∂r

(
ρr2∂vr

)
+

1

r sin θ

∂

∂θ
(ρvθ sin θ) = 0 (12)

2 Static fluids

Next, we will need the equation for the forces and momentum in the fluid. Let us consider a com-
pletely static volume of fluid, with no net flow in any direction. If we know the pressure at some
point within the fluid (say, at its bottom surface) is Po, then at any point a height h above that
level, the pressure is just P = Po − ρgh where g is the gravitational acceleration, and ρ the fluid
density (Fig. 2). Put another way, the pressure as a depth h differs from our reference level only by
the weight of the fluid in a column of height h.

We can turn this equation around: if Po is just an arbitrary, constant reference pressure, then
this also implies that anywhere in the fluid P + ρgh = Po must be constant! Actually, this is
not so surprising either. If we multiply everything by a volume of interest, we are merely stating

iiOne can also show that β≈ 1
ρc2

, where ρ is the fluid density and c is the speed of sound. Given c≈1480m/s in
water, we arrive at β≈5× 10−10 Pa−1. See https://en.wikipedia.org/wiki/Compressibility

https://en.wikipedia.org/wiki/Compressibility


static fluid

surface

P(h) = Po − ρgh

P = Po, h = 0

Figure 2: Pressure variation with depth in a static fluid. The pressure at a height h above a reference level is smaller by the
weight per unit area of the fluid above the reference level.

conservation of energy.

PoV = PV + ρV gh = PV +mgh (13)

The work done in increasing the pressure on a given constant volume is P (V − Vo), and this work
must be accounted for by the change in gravitational potential energy, mgh. Again, in dealing with
continuous matter such as a fluid, it is more convenient to recast all of our equations in terms of
density rather than mass and volume. In this light, gh is just the gravitational potential per unit
mass, so what we are really saying is that pressure plus gravitational potential is a constant for a
static fluid, or that pressure itself is a sort of volumetric potential. Thus, if we define a gravitational
potential per unit mass φ=gh, we have

P + ρφ = const with φ = Ugrav/m = gh (14)

Now we have an energy balance for our static fluid, it is only a bit of mathematics to find a force
balance. If we consider a one-dimensional fluid, we know that force is just the spatial derivative
of the potential energy, Fx = −dU/dx. The same will hold true of the potential energy per unit
volume, which amounts to taking the spatial derivative of both sides of Eq. 14. In one dimension,
this gives

∂P

∂x
+

∂

∂x
(ρφ) = 0 (15)

The force has two terms: the first tells us that fluids move in response to a pressure gradient, from
high to low, and the second tells us that fluids flow in response to gravitational force, downhill. If
we consider only fluids of constant density (incompressible fluids), this simplifies to

∂P

∂x
+ ρ

∂φ

∂x
= 0 (16)



In three dimensions, we need only replace the spatial derivative with a gradient:

∇P +∇ (ρφ) = 0 (compressible) (17)

∇P + ρ∇φ = 0 (incompressible) (18)

This is nothing more than a Newton’s law force balance for our stationary fluid, if we recognize
that ρ∇φ is the force (per unit volume): in static equilibrium, the force per unit volume is precisely
balanced by a gradient in pressure.

This equation is the complete description of hydrostatics, though it is quite a bit more complicated
than it looks: there is no general solution. If the density of the fluid varies spatially (∇ρ 6= 0

somewhere), our continuity equation above tells us that there is no way that a static equilibrium
can be maintained, we must have also have time-varying density. iii Only if ρ is constant in space
do we have a simple solution for hydrostatics, viz., P + ρϕ=const.

3 Moving fluids: Equations of motion without viscosity (“Dry Wa-
ter”)

What to do if the fluid is not static? We already know the continuity equation in general, but we
still need to consider a more general force balance for our fluid. What we have derived above is the
equilibrium condition for a static fluid, generalizing just means letting the pressure and potential
gradient terms become unbalanced to yield a net acceleration. In the absence of viscous forces, this
would simply be

ρ× (acceleration) = −∇P − ρ∇φ (19)

The left side is the net force per unit volume, and the first two terms on the right are our pressure
and potential gradients. Already, if these terms on the right are unbalanced (e.g., if we have a
spatially-varying density) we will have a net acceleration of the fluid, and hence motion. What does
the acceleration term look like?

What we really need to find is ∆v/∆t for infinitesimal ∆t, that is our acceleration. Just from the
mathematics of partial derivatives, we can say quite a lot already. Say we know the velocity of a
infinitesimal volume of fluid at some particular point in space and time, v(x, y, z, t). What is the
velocity of the same bit of fluid at some later time t+ ∆t when the bit of fluid is at a neighboring
point (x+ ∆x, y + ∆y, z + ∆z)? From the definition of partial derivatives, for small changes in x,

iiiStrictly, for a fluid of constant density, a spatially-varying density in Eq. 7 implies that the velocity field must
have zero divergence, or be zero everywhere to have a density which does not vary in time. Only the case v = 0
corresponds to a truly static situation, and thus, if ρ has any spatial variation, a time variation is implied.



y, z, and t (i.e., to first order) we can write the change in velocity as

∆v = v(x+ ∆x, y + ∆y, z + ∆z, t+ ∆t)− v(x, y, z, t) (20)

≈ ∂v

∂x
∆x+

∂v

∂y
∆y +

∂v

∂z
∆z +

∂v

∂t
∆t (21)

This is not incredibly useful, as such, but we can multiply and divide every spatial derivative by ∆t

to put this in a more interesting form:

∆v =
∂v

∂x
∆x+

∂v

∂y
∆y +

∂v

∂z
∆z +

∂v

∂t
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=
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∆t+

∂v

∂t
∆t (23)

=
∂v

∂x
vx∆t+

∂v

∂y
vy∆t+

∂v

∂z
vz∆t+

∂v

∂t
∆t (24)

=

(
∂v

∂x
vx +

∂v

∂y
vy +

∂v

∂z
vz +

∂v

∂t

)
∆t (25)

The acceleration, ∆v/∆t in the limit ∆t→0, is then

dv

dt
=
∂v

∂x
vx +

∂v

∂y
vy +

∂v

∂z
vz +

∂v

∂t
(26)

This might not look like much, but if we look and rearrange it carefully we can recognize a nicer
vector form:

dv

dt
= vx

∂v

∂x
+ vy

∂v

∂y
+ vz

∂v

∂z
+
∂v

∂t
(27)

=

[
(vx x̂ + vy ŷ + vz ẑ) ·

(
∂

∂x
x̂ +

∂

∂y
ŷ +

∂

∂z
ẑ

)]
v +

∂v

∂t
= (v · ∇) v +

∂v

∂t
(28)

Can you see why it must be (v · ∇) v and not, e.g., v · (∇v)? (If for no other reason, the former is
a vector while the latter is a scalar!)

Having found the acceleration, in the absence of viscous forces our equation of motion is complete:

dv

dt
= ρ (v · ∇) v + ρ

∂v

∂t
= −∇P − ρ∇φ (equation of motion, no viscosity) (29)

3.0.1 Rotation

We can add a bit more physical content to our equation of motion by defining a new field from the
curl of the velocity, Ω=∇×v. This quantity is called the vorticity of the fluid, and it characterizes
the circulation of the fluid. If Ω=0 everywhere, the fluid is said to be irrotational. By introducing



the vorticity, we can separate the terms in our equation of motion to characterize two basic cases:
fluids that swirl, and those that do not. (It might help to recall the fundamental theorem of vector
calculus, which roughly states that we can build any reasonable vector field out of the sum of an
irrotational (zero curl) field and a solenoidal (zero divergence) field.)

If we are only interested in fluids that do not circulate, this will allow considerable simplification. In
order to achieve this separation, we can also make use of the following vector identity to introduce
terms that contain ∇× v:iv

(v · ∇) v = (∇× v)× v +
1

2
∇ (v · v) = Ω× v +

1

2
∇v2 (30)

This allows us to put our equation of motion in the following form:

ρ
∂v

∂t
+ ρΩ× v +

1

2
ρ∇v2 = −∇P − ρ∇φ (31)

The physical content of the vorticity field is perhaps more apparent if we we recall the fundamental
theorem for curls, which states that integrating the curl of a function over a surface S is equivalent
to taking a line integral of that function over a curve C bounding the surface:

∫

S
(∇× v) · da =

∫

S
Ω · da =

∮

C
v · dl (32)

The line integral of the velocity around a closed loop is nothing more than the net circulation of the
fluid, so what this tells us is that the vorticity Ω is just the net circulation of the fluid around an
infinitesimal closed loop. Consider the case where we have pure rotational motion of a fluid, such
as a perfect circular flow of fluid inside a bucket. At a given radius r from the center of rotation,
this gives 2πrv=πr2Ω, or ω=Ω/2. The angular velocity of the fluid (or a small particle placed in
the fluid) at any given radius is just half the vorticity.

We can go still further with vorticity. If we are only interested in the velocity field in the fluid, we
can eliminate pressure from Eq. 31. If we take the curl of both sides of Eq. 31, and remember that
∇× (∇f)=0 for any f , we have

ρ∇× ∂v

∂t
+ ρ∇× (Ω× v) = 0 (33)

or
∂Ω

∂t
+∇× (Ω× v) = 0 (34)

Along with the definition of vorticity Ω=∇×v and our continuity equation ∇·v=0, this equation
is sufficient to find the velocity field of our fluid. From the form of these equations, if we know Ω

ivSee https://en.wikipedia.org/wiki/Vector_calculus_identities, and look for “Vector dot product” and the
“special case” in particular.

https://en.wikipedia.org/wiki/Vector_calculus_identities


at one particular time, that means we also know both the curl and divergence of v, which means
knowledge of Ω alone determines v. In fact, there is an even more striking consequence: if we have
Ω=0 everywhere at some instant in time, then ∂Ω/∂t=0 as well. If the fluid is irrotational at any
time, it is irrotational at all times! As nice as this new equation is, we should not forget that we
have thrown away all information about the pressure. We would still have to take our velocity field
and use Eq. 31 to deduce anything about the pressure.

As an aside, our equations in terms of vorticity have an interesting analogy with magnetism, where
we have

∇ ·B = 0 ∇×B = µoj B = ∇×A (35)

Thus, mathematically speaking, velocity is analogous to magnetic field, and vorticity is analogous
to current density. Knowledge of the current density throughout space allows us to determine the
magnetic field, just as knowledge of the vorticity allows us to determine the velocity.

3.0.2 Irrotational Fluids

Now, taking advantage of this new form, we can consider only irrotational fluids for which Ω = 0,
in which case we have the simpler result

ρ
∂v

∂t
+

1

2
ρ∇v2 = −∇P − ρ∇φ (equation of motion, no viscosity, irrotational) (36)

At this point, we can make another analogy with electromagnetism. The conditions of zero rotation
and continuity actually give us enough to solve for the velocity field by themselves:

∇ · v = 0 ∇× v = 0 (37)

This is just like Maxwell’s equations for E and B in free space. This is handy: for an irrotational,
incompressible fluid the boundary value problems are often the same as ones we have already solved.
What’s more, these equations are linear differential equations, unlike our more general expressions
for fluid flow. This is only true for incompressible fluids in irrotational flow. Since the governing
equations are linear, that means that the solutions obey superposition: if we have two solutions to
the equations, then their sum (or difference) is also a solution, just like in electromagnetism.

3.0.3 Steady flows and Bernoulli’s equation

Finally, there is one more simplification we can make for many reasonable cases: the assumption of
steady flow. This doesn’t mean we have nothing happening, it is merely the condition that we have



motion of the fluid at constant velocity, ∂v/∂t=0. In this case,

1

2
ρ∇v2 = −∇P − ρ∇φ (equation of motion, no viscosity, irrotational, steady flow) (38)

Since every term in this equation involves a gradient, we may simply integrate both sides to get rid
of a gradient from every term, and once we remember to add in an integration constant, we have

1

2
ρv2 + P + ρφ = (const) (39)

If we multiply through by a volume of interest, we recover something recognizable:

1

2
mv2 + PV +mgh = (const) (40)

This is Bernoulli’s theorem, which is just a statement of conservation of energy for an irrotational
fluid. Compare this to our starting point for a static fluid, P + ρφ=(const.), and you will see that
the new term 1

2ρv
2 is nothing more than the kinetic energy of the moving fluid!

3.0.4 Example: water draining from a tank

As a quick practical example of what we can do with this, let’s consider a case you have all dealt
with: water draining in the bathtub. We’ll imagine that we have a cylindrical bathtub of radius R,
with a drain plug at the bottom in the exact center of the tub. Now we’ll fill up the tub, stir it
up to get it circulating, and pull the drain plug. We know that at first the water will form a nice
spiral circulating down the drain, but the rotation will die out due to viscosity after a short time.v

After the flow becomes irrotational due to viscous forces, what remains is still a nice conical shape,
however. But what is the shape?

Within a given vertical plane, we can calculate the net circulation at a radial distance r from the
center as in Eq. 32, the net circulation is

∮
v · dr = 2πrvθ, where vθ is the tangential velocity.

Once we are in the regime of irrotational flow, however, the circulation can’t depend on the radial
distance.vi Thus, we must have 2πrvθ=constant, and this can only be true if the tangential velocity
is proportional to 1/r. If we express the continuity equation ∇ · v=0 in cylindrical coordinates, we
can find the radial component of the velocity:

∇ · v =
1

r

∂

∂r
(rvr) +

1

r

∂vθ
∂θ

= 0 =⇒ rvr = (constant) (41)

vWhy don’t you have to stir the tub to see this effect? It has nothing to do with what hemisphere you’re in or
the Coriolis effect, it is simply a result of the pipes leading away from the tub having turns in them.

viYou might think that the circulation has to be zero, but that is not quite true because we include the origin in
our surface. The curl of the velocity is zero everywhere except the origin, and this gives a constant contribution to
the integral of ∇× v over a surface including the origin.



Since vθ is independent of θ, ∂vθ/∂θ= 0, it must be the case that ∂
∂r (rvr) = 0, and therefore rvr

must be constant, and it is correct that the radial velocity is proportional to 1/r. At the air-water
boundary, we know that the pressure is simply atmospheric pressure, a constant. Since our fluid
is irrotational, incompressible, and experiencing steady flow at a given radial position, we can use
Bernoulli’s equation to express energy conservation at a given radial position r and height z:

1

2
mv2 +mgz = (const) (42)

Since we know v∝1/r, this means that z∝1/r2, and the shape of our draining water surface thus
obeys the curve z(r)=C/r2.

4 Viscosity

Adding a viscous (drag) force to our equation of motion is not much of a problem, in principle. If
we have a viscous force fv per unit volume, then Newton’s law yields

ρ (v · ∇) v + ρ
∂v

∂t
= −∇P − ρ∇φ+ fv (43)

We simply have to add in the net viscous force per unit volume to the forces due to a pressure
gradient and a height variation. The problem is, how do we model the viscous force?

Our model of fluid flow thus far basically ignores the presence of any resistive forces, or forces
perpendicular to the direction of the fluid flow. In other words, our first model assumes that the
fluid will put up no resistance to being pushed around, which is clearly unrealistic. This is not
even realistic for a solid: when we deform a solid, we know that it will produce a restoring force
proportional to the strain it experiences, giving rise to Hooke’s law macroscopically. Real fluids will
also react to an applied force or pressure, but more important in this case than the amount of strain
is the rate at which strain is produced. For example, in most fluids it is easier to move slowly than
it is to move rapidly – think about swimming or stirring a jar of thick syrup.

Perhaps more importantly, when we consider a continuous substance like a fluid we have to consider
lateral or shear forces tangential to the direction of motion. If you stir a jar of syrup along one
direction, there is clearly a fluid flow along the directions tangential to the motion, meaning there
must be forces not just parallel to the fluid motion but in the transverse directions as well. This a
type of force you have probably not encountered before, and one which requires careful treatment.

Thinking about the problem another way, our previous model also ignored any interactions between
a moving fluid and a solid surface it encounters. In fact, it would have all but impossible to do
so without some sort of empirical guidance or at least a hint at the answer. In this, we are lucky,



however. One important experimental fact severely constrains models of viscous forces: the velocity
of a fluid is exactly zero at the boundary of a solid surface. This is not an obvious fact, but one you
can easily verify: how else would your ceiling fan blades have dust on the top of them? Shouldn’t
it blow off?

With this fact, we can attempt a model of viscous forces. Image that we have two flat parallel plates
of area A immersed in an initially stationary fluid, separated by a distance d. We hold one plate
at rest in the fluid, and move the other plate at velocity vo through the fluid. In a fluid without
viscosity, the moving plate would not disturb the fluid at all, and the fluid velocity would be zero
everywhere. However, if the relative velocity of fluid and plate must be zero at each plate’s surface,
that means that the fluid velocity varies from 0 to vo moving from the stationary to the moving
plate! At the surface of the moving plate, the fluid must have velocity vo, and at the surface of the
stationary plate, it must have v=0.

d

v = 0

v

�F
vo

Figure 3: Viscous drag between two parallel plates in a fluid.

If you measure the force required to keep the top plate moving, it turns out to be proportional to
the velocity of the plate and its area divided by the spacing between the plates at low velocities
(low Reynold’s numbers).

F = η
voA

d
(44)

The constant of proportionality η is known as the coefficient of viscosity, and to some extent it is
a measure of how much force must be supplied to produce motion in a fluid. Noting that power
is F · v, you can see that the power required to maintain a speed v in a fluid scales as ηv2. What
is interesting about this relationship is that the force, along the axis of motion, depends on the
transverse area of the plate. This is quite different from any force we’ve encountered so far!

In moving beyond a single dimension, we also have our previous and related problem to consider: if



we press on a fluid in one direction, it will move in all directions, not just along the direction of the
applied force. This is in sharp contrast to our usual considerations of infinitesimal particles, or rigid
objects. What do we do when the object can “squish?” In the example above, the moving plate will
displace the fluid it is moving through, imparting velocity in the directions perpendicular to the
motion of the plate. Evidently, what we lack is a way to relate an applied along one direction with
an induced force along another. The mathematical tool we are missing is the tensor, a generalization
of vectors and scalars which turns out to be indispensable for many areas of physics.

5 Tensors

So far as we need them, a tensor is a set of numbers (or a matrix) that when multiplied by a
vector gives back a new vector. Of course, this much can be accomplished by vector or scalar mul-
tiplication, but what makes tensors special is that the two vectors need not be simply parallel or
perpendicular. This is exactly what we need to understand stress and pressure in materials: relating
a displacement or force in one direction to a resulting force along a different direction, particularly
when materials are allowed to deform. A close analogy to the type of mathematical object we need
is the rotation matrix: a multiplying a given vector by a rotation matrix gives a new vector of the
same length, but pointing in a new direction. A tensor is in a sense a more general type of matrix,
in which both the length and direction of the resulting vector are generally different.

As an example, let’s say we want to consider the conductivity of a material, σ. Ohm’s law states
that the current density is proportional to the electric field via the conductivity:

j = σE (45)

In an isotropic, homogeneous material, σ is just a scalar, a plain number, that characterizes how
much current density results from a specific electric field. As such, a scalar conductivity results in
a current density which is always parallel to the electric field. In many materials, this is a perfectly
reasonable assumption. However, this is clearly a simplification: what about crystals? In a perfect
crystal, we have a symmetric arrangement of atoms which is clearly not isotropic, and it is unphysi-
cal to expect the conductivity to be the same along every direction in the crystal. If we have a simple
cubic crystal, it would be reasonable to expect the conductivity to be the same along all three crys-
tallographic directions, but we would certainly expect a different conductivity along other directions.

Consider a simple two-dimensional crystal, with a square grid of atoms along the x and y directions.
If the spacing of atoms along x and y is the same, we expect that a given electric field applied along
the x or y direction would lead to the same current density. However, if we applied the electric field
along the line y = x, 45◦ with respect to the rows of atoms, we should expect a different current
density. Thus, at the very least, our conductivity must be direction-dependent so long as the crystal



is not isotropic! Moreover, this means that we can’t even reasonably expect that the current density
is along the same direction as the electric field. If the field is along the the line y=x, and we have
different conductivities in the x and y directions, we should expect that the resulting current density
has both x and y components, and they will not be the same. Even in an isotropic material we
have to worry about this to an extent, current will spread out in all directions in a uniform conductor.

In general, the conductivity actually has nine components relating electric field to current density,
since we have three directions for E combined with three components for j. The conductivity, then,
is really a matrix:

ji =
∑

j

σijEj or



jx

jy

jz


 =



σxx σxy σxz

σyx σyy σyz

σzx σzy σzz






Ex

Ey

Ez


 (46)

The nine components of σ make a tensor, relating E along an arbitrary direction to a resulting j

along a different direction. The indices of σ signify which component of E is being related to which
component of j: the first index is the component of E, the second the component of j. Incidentally,
the fact that we require two indices to tabulate all of the components of σ makes it a “second rank”
tensor.vii One common notation to indicate that σ is a tensor is σij , another is ←→σ , and a third is
σ, depending on the field of study. We will use σij . Thus, for the x component of j, we have

jx = σxxEx + σxyEy + σxzEz (47)

If we apply an electric field purely along the x direction, j still has components in all three directions
due to the anisotropic nature of our crystal:

jx = σxxEx jy = σyxEx jz = σzxEx (48)

Usually, we don’t need to deal with all nine components, and we can make use of symmetry to
reduce the number of independent components. For instance, the conductivity tensor is symmetric,
meaning that σij =σji. Applying an electric field Ex along the x axis leads to a current density jy
along the y axis, and if we apply the same electric field along the y axis, we end up with the same
current density along the x axis:

jy = σyxEx jx = σxyEy σxy = σyx (49)

In fact, it is possible to simplify the conductivity even further. Our choice of axes along which
to decompose the electric field and conductivity vectors, and thus the conductivity tensor, was
completely arbitrary. For a second-rank tensor like conductivity, it is always possible to choose axes

viiBy the same logic, we can call vectors “first rank” tensors, needing only one index, and scalars “zero rank” tensors.



such that the tensor is diagonal, e.g., such that only σxx, σyy, and σzz are non-zero:



jx

jy

jz


 =



σxx 0 0

0 σyy 0

0 0 σzz






Ex

Ey

Ez


 (50)

In a crystal, finding the diagonal representation of a tensor typically corresponds to choosing the
natural crystallographic axes for decomposing the electric field and current density. Finally, in an
isotropic material, in which the conductivity is independent of direction, σxx = σyy = σzz, and we
may treat the conductivity as a simple scalar.

5.1 Conductivity tensor for the Hall effect

Actually, we already know one simple situation in which a tensor conductivity is required even for
an isotropic medium: the Hall effect.viii You used tensors without even knowing it! Imagine we
have a sheet of uniform conductor lying in the xy plane, with an electric field Ey applied along the
y axis. This will impart a velocity, on average, of vy to each positive charge q in the conductor. In
the absence of a magnetic field, Ohm’s law plus a free-electron model gives us the current density
in the y direction:

jy = σyyEy with σyy =
nq2τ

m
= µnq (51)

Here n is the number of charge carriers per unit volume, m the mass and q the charge per carrier,
τ the average time between collisions, and µ=qτ/m the carrier mobility. Now, of course, we know
that we need to label σ as a tensor. In this case, we need the component σyy when both current
density and electric field are along y. Applying an electric field along the x direction for our ho-
mogenous sample would lead us to σxx =σyy. If there is no magnetic field, then this is the end of
the story: σxy =σyx = 0, since there is no net force on the charges in the directions perpendicular
to E. Thus, our conductivity tensor is diagonal, and the diagonal elements are all the same, which
means we can treat the conductivity as a simple scalar. No problem.

Next, we add a magnetic field Bz in the +z direction in addition to the electric field in the y direc-
tion. Now we have a transverse magnetic force on the charge carriers, FB=qvyBz, acting on positive
charges in the +x direction. This leads to a separation of charge along the x axis, which means
there must be an electric field −Ex now. This electric field will give rise to a force opposing the
charge separation: the stronger the magnetic field, the stronger the magnetic force, the larger the
charge separation, but the larger the electric field. At equilibrium, the two horizontal forces must
be equal, qEx = qvyBz, or Ex = vyBz. We could have arrived at this result far more quickly using
the relativistic transformations of the fields: in the charges’ reference frame, traveling at velocity v,

viiiIf you haven’t had electricity and magnetism, you can skip this section.



the magnetic field appears as an electric field of magnitude E′=v ×B.

This is the usual Hall effect you have seen in electromagnetism: a magnetic field applied orthogonal
to a current gives rise to an electric field (or potential difference) along the third axis. What it
means is that now we have a “shear” component to our conductivity tensor: the electric field and
current density along y in the presence of a magnetic field along z gives us an electric field along x!
Even though the conductor itself is isotropic, the presence of a magnetic field breaks the symmetry
of the problem, and that is sufficient to require a tensor to relate j and E.

Now we just need to figure out what the new component of the conductivity is. Since in the field
Bz we have Ex resulting from jy, we can guess that it must be σyx. We have already related Ex and
Bz, we can relate Ex and jy by noting the relationship between current density and drift velocity:
jy=nqvy. Thus,

Ex = vyBz =
jyBz
nq

(52)

jy =
nq

Bz
Ex = σyxEx =⇒ σyx =

nq

Bz
(53)

What about σyx? If we were to apply the electric field along the x direction instead, but keep B in
the z direction, we would have a current density along the x direction, but the induced electric field
would be along −y rather than +y. This means σyx=−σxy. In the presence of orthogonal electric
and magnetic fields, we can now write down the entire conductivity tensor and the relationship
between j and E

σ =

[
σxx σxy

−σxy σyy

]
=



µnq

nq

Bz−nq
Bz

µnq


 ji =

3∑

j=1

σijEj (54)

This conductivity tensor encompasses both normal Ohmic conduction and the Hall effect. If the
fields are not orthogonal, this is not much of a problem, at least in two dimensions, since only the
component of B orthogonal to E will alter the conductivity in this simple picture.

5.2 Other examples of tensors

In fact, you’ve already encountered tensors many times, probably without knowing it. Generally
speaking, if you need to relate two vectors, and they in general need not be strictly parallel or per-
pendicular, a tensor is probably involved. For instances, the moment of inertia is really a 2nd-rank
tensor, since angular momentum and angular velocity are not in general parallel. Torque is also a
2nd-rank tensor, and anti-symmetric (τij =−τji), but happens to transform like a vector in three
dimensions. For that reason, we usually just treat it as a vector (or pseudovector, really) since we
can get away with it!



6 The Stress Tensor

So what is stress? Essentially, it is nothing more than a generalization of pressure, a net force per
unit area. Hydrostatc pressure we are used to dealing with is just a special type of stress, when
the net force is normal to area of consideration. In a static fluid, the force on each side of an
infinitesimal cube of fluid is the same in magnitude and always normal to the surfaces of the cube.
In this case, the stress is just the hydrostatic pressure, and it is a simple scalar: F=PAn̂, where n̂

is a unit vector normal to the area A.

When we wish to deal with the internal forces in continuous objects, however, this need not be
true. Inside a solid object or a fluid, we know there are internal forces between neighboring parts of
the material holding it together. Consider first a cube of a nice squishy substance like gelatin, and
cut it into two pieces. Clearly, before we cut the gelatin, there must have been a force holding the
two pieces together. Before the cut, each half exerted a force ∆F on the other to hold the block
of gelatin together, so the stress in the material was simply this force divided by the area of the
cut surface. However, the net force between the two pieces was not simply perpendicular to the cut
surface. If that were true, any infinitesimal force along the cut plane would have separated the two
pieces. Thus, there must be forces acting not just normal to any surface in the block, but also along
the two tangential directions. In order to properly treat a patch of surface within a continuous
object, we must deal with all three components of force acting on the surface. This is what stress
is, a generalization of pressure to encompass forces acting on a surface in all three directions.

Let us go back to a simple example, where we have a flat plate moving at velocity vo through a fluid.
In that case, we had two types of forces present. First, we had a force per unit area on the surfaces
of the plate due to the hydrostatic pressure of the fluid, which acted equally in all directions and
normal to each surface. This force can be described by a simple scalar, the pressure, and the area
of the plate. Second, we had a force acting antiparallel to the velocity due to the viscous drag of
the fluid. This is what we would call a shear force, being tangential to the surface of the plate.
The force per unit area due to viscous drag is thus a shear stress, acting in the −x direction, and
it depends on a velocity in the x direction and an area in the xy plane. A complete description of
such forces will require a tensor, the stress tensor. As another quick example, let’s go back to our
cube of gelatin. Say we press down (along −z) on the upper face lying in the xy plane. This will
clearly lead to a net force in the z direction on both faces in the xy plane, and a net shortening
of the cube along the z direction. If the gelatin is incompressible, however, conservation of matter
requires that the cube bulge out in the x and y direction, meaning there must be outward forces on
the other four faces of the cube! Again, we will need a tensor to describe this situation, since we
have an applied force in one direction leading to net forces in all three directions.
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Figure 4: Force components on a planar slice of fluid with its area normal along x̂.

How can we figure out what the stress tensor looks like? Let’s consider a volume of continuous
incompressible material, of constant density ρ. Now, take a small slice of this material perpendicular
to the x axis, making a little square of sides ∆y and ∆z with area normal x̂, shown in Fig. 4. If we
apply a force ∆F1 to this surface along an arbitrary direction, we can break it up into components
∆F1x normal to the surface and ∆F1y and ∆F1z tangential to the surface. The components of stress
are just these forces divided by the area of our surface, labeled with two indices: the first labeling
the direction of the force component, the second the area normal. For example, the force per unit
area along the y direction is just

τyx =
∆F1y

∆y∆z
=

∆F1y

∆ax
(55)

where ∆ax is just the area of our element of surface perpendicular to the x direction. Similarly, we
have net forces per unit area in the x and z directions,

τzx =
∆F1z

∆y∆z
τxx =

∆F1x

∆y∆z
(56)

The stress τxx acts normal to our little area, just as a simply hydrostatic pressure would, while
the stresses τyx and τzx act along the transverse directions. In total, just to describe the stress
along a single axis, we need three components, which means that a full description of all the stresses
on an object will require nine components. For example, if we now take a slice of material lying
perpendicular to the y axis, lying in the xz plane, this area will have a net force ∆F2 acting on
it, and resolving it along the three axes leads to stresses τxy, τyy, and τzy. We can make a similar
construction for a slice perpendicular to the z axis, and in total the stress on our object will be



characterized by nine numbers, which we can conveniently express as a matrix:

τij =



τxx τxy τxz

τyx τyy τyz

τzx τzy τzz


 (57)

The diagonal components τii are normal stresses, representing forces per unit area acting perpendic-
ular to the area of a given face. These components are what we would usually just call pressure, the
net force per unit area acting perpendicular to a given face. The off-diagonal components are the
shear stresses acting along the two directions tangential to a given face, analogous to the tangential
frictional force present when we slide two objects past one another. Our nine numbers τij in total
make up the stress tensor, where i indicates the direction along which the stress acts, and j indicates
the surface normal of the relevant face. Thus, τxy represents a shear stress acting in the x direction
on a face whose area normal points in the y direction.

At this point, it is probably useful to draw a little picture. Take a small cube of material, aligned
along the x, y, and z axes. Looking down the z axis at one side of the cube, we can visualize the
components of the stress in the x and y directions acting on four of the faces, shown in Fig. 5.

τxx

τxx
τyx

τyx

τyy

τyy
τxy

τxy

Figure 5: The forces in the x and y directions on the faces of an infinitesimal cube. The diagonal components of stress τii
act normal to each face, while the off-diagonal components τij act tangentially to each face. Since the cube is very small, the
stresses do not change appreciably across the cube.

As you can see, the forces on real continuous objects are rather complicated. From our initial
discussion of a static fluid, requiring only a simple scalar pressure, we now have a nine-component
second-rank tensor. However, it is not as bad as it seems: the stress tensor turns out to be symmet-
ric, and we don’t need all nine components. If we consider an infinitesimally small cube of material,
then we can imagine that the stresses do not change appreciable from one side to the other. As
shown in the figure above, the forces on opposing sides of the cube must be equal and opposite in



this case. This also implies that the torque about the center of the cube is zero – if it were not,
the cube would start spinning, which would be unphysical for an infinitesimally small object. If
our cube has sides of dimension ∆a, then we can easily write down the torque about the center as
∆a(τyx − τxy) = 0, which means τxy = τyx. We can apply the same logic looking at the other faces
of the cube, and just by considering that the cube must be in rotational equilibrium we find that
the stress tensor must be symmetric, τij = τji. In short, we have only have six unique components
of stress, rather than nine.

Since our stress tensor is symmetric, it can be described by a symmetric matrix. If you have taken
linear algebra, you might recall that this leads us to an even more important property of the stress
tensor: since it is symmetric, it is always possible to find a choice of coordinate axes for which it is
diagonal. That is, if we choose our coordinate axes carefully, it is always possible to find a special
orientation for which our stress tensor has only the three components τxx, τyy, and τzz. In a perfect
crystalline material, this special choice may correspond to the crystallographic axes, for instance.
However, in general, the stress tensor varies from point to point in a material, meaning it is actually
a tensor field. Just like we have a scalar field T (x, y, z) describing the temperature everywhere in
a room, or a vector field E(x, y, z) describing the electric field through all space, our stress tensor
field describes the components of stress at all points in a material. At every point in space, the
stress tensor gives us nine numbers – six unique numbers – describing the forces at that point, and
thus a full description of the forces in a body require six functions of position.

6.1 The Maxwell stress tensor

Incidentally, there is a stress tensor associated with electromagetic forces per unit volume, the
Maxwell stress tensor. The electromagnetic force per unit volume can be written in terms of the
electric and magnetic fields along with the charge and current densities

f = ρE + j×B (58)

Though it is quite some work to prove it, one can also write the electromagnetic force per unit
volume as the divergence of a second-rank tensor:

f = ∇ · T (59)

Here T is the Maxwell stress tensor, and it is defined by

Tij = εo

(
EiEj −

1

2
δijE

2

)
+

1

µo

(
BiBj −

1

2
δijB

2

)
(60)

Where δij is the Kronecker delta function, something which shows up quite a bit in tensor and



vector analysis. It has a very simple definition:

δij =





0 i 6= j

1 i = j
(61)

Written out explicitly as a matrix,

T =
1

4π



E2
x − E2

2 ExEy ExEz

ExEy E2
y − E2

2 EyEz

ExEz EyEz E2
z − E2

2


 (62)

As with our general stress tensor in the previous section, the diagonal Tii components give rise to
pressure-like forces, while the off-diagonal Tij give rise to shear forces. You are certain to encounter
this tensor again in later physics courses . . .

7 Viscosity and stress in three dimensions

After a long detour, we can finally return to our parallel plates moving within a fluid from Sect. 4.
Recall our setup:

d

v = 0

v

�F
vo

Figure 6: Viscous drag between two parallel plates in a fluid.

To be a bit more concrete, let the x axis be in the direction of the applied force, the y direction
upward, and the z direction out of the page. Using our new tensor machinery, we can write the
force per unit area along the x direction required to keep the top plate moving as a stress:

τyx =
Fx

∆y∆z
= η

vo
d

(63)

Here we used Eq. 44, and noted that A= ∆y∆z. Thus, what we have previously considered is a



shear stress acting tangential to the plates due to a viscous force along the x axis, and empirically
it is found to be proportional to the speed of the upper plate through a scalar coefficient we call
the viscosity.

As a slightly more general case, we could forget about the plates, and only consider artificial surfaces
within the fluid itself, moving at different velocities. In Fig. 7 below, we look at an extended region
within a moving fluid, with its faces parallel to the fluid flow. In general, the velocity of the fluid
will vary along the vertical direction (y), such that at the top of our cell the velocity is v+ ∆v, and
at the bottom it is just v. Based on our simpler model above, the net shear force acting on the cell
in the x direction will the difference between the forces on the top and bottom of the cell, divided
by the area of the plate ∆A. By analogy with the situation with two plates, the shear stress is
then proportional to the difference in velocity between the top and bottom of the cell divided by
the vertical extent of the cell:

∆Fx
∆A

= η
∆v

∆y
= η

∂vx
∂y

= τyx (fluid velocity along x only) (64)

This net shear stress acts to the right on the top face, and would tend to either deform our cell into
a parallelogram or lead to a rotation of our cell in the clockwise direction. The only way that the
fluid will be irrotational is if ∂vx/∂y=0, that is, the velocity is constant along the vertical direction
and there is no net force at all. Otherwise, a variation in fluid velocity along the vertical direction
leads to a horizontal shear stress.

∆y

∆A ∆F v + ∆v

v

Figure 7: A small volume of fluid within a flow.

What if the velocity of the fluid isn’t strictly parallel to the faces of our cell? Let’s say the vertical
component of the velocity varies across the top and bottom faces, with the velocity being higher
on the left side of the cell. This situation would also tend to cause a clockwise rotation of our cell,
meaning that there must also be stress components along the x direction due to the variation of



fluid velocity in the x direction (as well as normal components along the y direction). For a general
fluid velocity, the horizontal shear stress must then have two components:

τyx = η
∂vy
∂x

+ η
∂vx
∂y

(65)

We could find the other shear components τyz and τzx similarly. Note that this equation immedi-
ately satisfies our symmetry requirement τxy = τyx. We can also see from this general expression
that there are only three cases in which there is no shear stress in the fluid: either the fluid is static
(v=0), the fluid’s velocity varies only along the out-of-plane z direction (∂vx/∂y=∂vy/∂x=0), or
the fluid is uniformly rotating (∂vx/∂y=−∂vy/∂x). Of course, there are also no shear forces in a
fluid with zero viscosity, but such things are incredibly rare.ix

Along these same lines, we can also find the normal stresses, those acting perpendicularly to the
faces of our cell. For example, if there is a variation in velocity along the vertical direction, then
there will also be a net force on the cell in the vertical direction, along with the shear component:

τyy = 2η
∂vx
∂x

=
Fy
A

= P (66)

Here A is the area of the cell, and this tells us that if ∂vx/∂x is nonzero (e.g., the velocity varies
along the flow direction), there is a pressure change along that direction as well. The normal com-
ponents of the stress, τii, are what we would simply call pressure if the fluid were static. In the
case of a moving fluid, the total normal force per unit area would be the static pressure P plus the
normal stress due to the fluid motion.

In general, so long as the fluid is incompressible, based on our description above you should be able
to convince yourself that the stress components are given by

τij = η

(
∂vi
∂xj

+
∂vj
∂xi

)
(67)

8 Viscous forces in three dimensions

Now that we have the shear stresses in the fluid in the presence of viscosity, we can complete our
equation of motion. All we need to do is work backwards to determine the forces on an arbitrary
cell within a moving fluid from the stress components. Imagine we have again a small cube of fluid,
Fig. 8, whose faces are aligned with our coordinate axes, with sides of length ∆x, ∆y, and ∆z.
In addition to any hydrostatic pressure, our cube will have a force on each of its six sides due to
the stress in the moving fluid fluid, whose velocity we will assume to vary in magnitude and direction.

ixLiquid helium is a so-called “superfluid” with zero viscosity, a macroscopic quantum-mechanical effect that can
be observed only at very low temperatures.
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Figure 8: The stresses in the x and y directions on the faces of a cube cube of fluid.

First, we can tabulate all of the forces along a given axis, starting with x. All six faces of the cube
will have a stress component in the x direction: four shear forces, and two normal forces. On face
1, we have a normal stress component τxx acting over an area ∆y∆z, and net x component of the
force on face 1 will be the product of stress and area. However, we must be careful: the stress
is really a tensor field, and it varies with position, so the value of τxx is different for face 1 and
face 2, for instance. Thus, we should explicitly note at which position we are evaluating the stress
components. With that in mind,

Fx1 = τxx

∣∣∣∣
x+∆x

∆y∆z (68)

The x component force on face two will be similar and opposite in sign, the only substantial difference
is that we are evaluating the stress tensor at a different position:

Fx2 = −τxx
∣∣∣∣
∆x

∆y∆z (69)

Faces 3 and 4 will also have forces in the x direction through the shear stress τxy. Face 3 has area
∆x∆z and it is located at vertical position y + ∆y. Face 4 has the same area, but the force is in
the opposite direction and τxy should be evaluated at a vertical position y.

Fx3 = τxy

∣∣∣∣
y+∆y

∆x∆z (70)

Fx4 = −τxy
∣∣∣∣
y

∆x∆z (71)

(72)



Finally, faces 5 and 6 (on the front and back of the cube in Fig. 8) also have forces along the x
direction through the shear stress τxy:

Fx5 = τxz

∣∣∣∣
z+∆z

∆x∆y (73)

Fx6 = −τxz
∣∣∣∣
z

∆x∆y (74)

(75)

All that is required now is to tabulate the net force along the x direction for the whole cube:

Fx = Fx1 + Fx2 + Fx3 + Fx4 + Fx5 + Fx6 (76)

=

(
τxx

∣∣∣∣
x+∆x

−τxx
∣∣∣∣
x

)
∆y∆z +

(
τxy

∣∣∣∣
y+∆y

−τxy
∣∣∣∣
y

)
∆x∆z +

(
τxz

∣∣∣∣
z+∆z

−τxz
∣∣∣∣
z

)
∆x∆y

(77)

= ∆τxx∆y∆z + ∆τxy∆x∆z + ∆τxz∆x∆y (78)

As with our equation of motion without viscosity, it is more useful to consider the force per unit
volume along x, which we’ll call fx:

fx =
Fx

∆x∆y∆z
=

∆τxx
∆x

+
∆τxy
∆y

+
∆τxz
∆z

(79)

If we take the limit that the dimensions of our cube become infinitesimally small, what we have is
the definition of a partial derivative:

fx =
∂τxx
∂x

+
∂τxy
∂y

+
∂τxz
∂z

(80)

We can repeat the analysis for the forces along the other directions, and our general expression for
an incompressible fluid is

fi =
3∑

j=1

∂τij
∂xj

with τij = η

(
∂vi
∂xj

+
∂vj
∂xi

)
(81)

The stresses in a fluid depend on the velocity gradients in the fluid (or, equivalently, the rate of
change of shear strain), while the forces depend on the stress gradients. There will only be a net
force on a volume of fluid if there is a net spatial variation of stress, and there will only be stress if
there is a net spatial variation in velocity. Combining the two relationships above, we can cut out



the middleman and relate the viscous force per unit volume directly to the velocity distribution:

fi = η

3∑

j=1

∂

∂xj

[
∂vi
∂xj

+
∂vj
∂xi

]
(82)

If we write out all three components of the force and rearrange the terms, we can recover a much
more compact vector equation. Let’s rearrange the sum and see what comes out:

fi = η

3∑

j=1

∂

∂xj

[
∂vi
∂xj

+
∂vj
∂xi

]
= η

3∑

j=1

∂2vi
∂x2

j

+ η
∂

∂xi

3∑

j=1

∂vj
∂xj

= η∇2vi + η
∂

∂xi
∇ · v (83)

Considering all three components of the force per unit volume, we have a nice vector equation in
the end:

f = η∇2v + η∇ (∇ · v) (84)

Here we have used the vector Laplacian ∇2v, which is just ∇2vxx̂ +∇2vyŷ +∇2vzẑ. We can make
this still simpler, however, by remembering that for an incompressible fluid (which we have already
assumed!), the continuity equation reads ∇·v=0. With that in mind, after much pain we ultimately
have a simple form for the viscous force in an incompressible fluid

fv = η∇2v (viscous force, incompressible fluid) (85)

Our pervasive assumption of an incompressible fluid does come at a price. For instance, we will not
be able to treat density variations in the fluid, such as sound waves. However, a wide variety of
interesting fluids are essentially incompressible, and the form of the viscous force per unit volume
above is sufficient. This assumption serves quite well for, e.g., air flowing at low speeds compared
to the speed of sound.

9 The equation of motion with viscosity for incompressible fluids

The general equation of motion we developed was

ρ (v · ∇) v + ρ
∂v

∂t
= −∇P − ρ∇φ+ fv (86)

where fv was our yet-to-be-determined viscous force. For an incompressible fluid, using the form of
the viscous force from Eq. 85, our equation of motion reads

ρ (v · ∇) v + ρ
∂v

∂t
= −∇P − ρ∇φ+ η∇2v (87)

This non-linear partial differential equation is the Navier-Stokes equation for flow of Newtonian



incompressible fluids. The Navier-Stokes equation is not straightforward to interpret qualitatively,
and famously difficult to solve in even the simplest cases. Another more common form substitutes
the potential per unit mass ∇φ=−gh, where h is the change in height:

ρ

(
∂v

∂t
+ v · ∇v

)
= −∇P + ρgh+ η∇2v (88)

This form is more easily interpreted as a statement of Newton’s law: mass (ρ) times acceleration
equals the sum of forces, namely pressure (−∇P ), viscous forces (η∇2v), and gravity (ρg). Since
we are assuming constant density (incompressible fluid), the continuity equation is simply ∇·v=0,
which is a statement of conservation of fluid volume.

Incidentally, we can also reintroduce our vorticity Ω=∇× v:

ρ

(
∂v

∂t
+ Ω× v +

1

2
∇v2

)
= −∇P + ρgh+ η∇2v (89)

That means that for an irrotational fluid (Ω=0), we have

ρ

(
∂v

∂t
+

1

2
∇v2

)
= −∇P + ρgh+ η∇2v (90)

The steady-state (∂v/∂t=0) equation for an irrotational fluid reads

1

2
ρ∇v2 = −∇P + ρgh+ η∇2v (91)

9.1 Steady flow through a long cylindrical pipe

Certainly after all this mess we should be able to handle the steady flow of water through a pipe.
Let’s try it out. We will take a very long circular pipe of length L and radius R whose axis is
oriented along the z direction, and it is carrying an incompressible fluid of density ρ. Clearly, it
will be convenient to work in cylindrical coordinates. We will imagine that we set up a pressure
difference between the end points to establish a flow of fluid, such that we have a pressure PL at
z=L and Po at z=0. If the pipe is very long and we can ignore the entrance and exit effects, then
the pressure gradient along the length of the pipe is just

∂P

∂z
=
PL − Po

L
(92)

Along the radial direction, there must be no pressure gradient if we have uniform flow of an incom-
pressible fluid, ∂P/∂r= 0. We can also establish some symmetry and boundary conditions on the
velocity of the fluid in the pipe. Due to the symmetry of the problem, the velocity is independent
of θ. Further, if the pipe is very long, then the radial component of the velocity vr should be
independent of z (in fact, it should be zero!). We need only worry about the variation of vz with r,



since vz should also be independent of z for a very long pipe – for an incompressible fluid, continuity
ensures that the velocity of the fluid cannot vary along the length of the pipe. Finally, at the pipe
boundary, we can also enforce the prior condition that the fluid is static, such that v(R)=0. This
condition means that the vz must peak at the center of the pipe, since it is zero at both edges, and
thus ∂vz/∂r must vanish at the center of the pipe, r= 0. The problem that remains is to deduce
what the variation of velocity along the axis of the pipe.

If we are only interested in slow and steady flow through the pipe (small Reynolds’ numbers) of
an incompressible fluid, we may also neglect the “acceleration” term in the Navier-Stokes equation
1
2ρ∇v

2. Presuming the ends of the pipe differ in height by h,

−∇P + η∇2v + ρgh = 0 (93)

With this convention, for positive h the end of the pipe at z=L is h above the end at z= 0. This
is just one step up from our equation of state for a completely static fluid, we now retain only
the viscous force η∇2v. Neglecting the acceleration is just saying we wish to find a solution for
which the velocity is constant, the definition of steady flow. Since we may also neglect the variation
of velocities along the θ̂ direction, in cylindrical coordinates we have a simplified Navier-Stokes
equation:

−∂P
∂r

+ η

[
∂

∂r

(
1

r

∂

∂r
(rvr)

)
+
∂2vr
∂z2

]
+ ρgrh = 0 (94)

−∂P
∂z

+ η

[
1

r

∂

∂r

(
r
∂vz
∂r

)
+
∂2vz
∂z2

]
+ ρgzh = 0 (95)

If we assume that the gravitational force acts along the −z direction only (so that the vertical
change in height of the pipe is h along z from one end of the pipe to the other) and apply our
boundary/symmetry conditions, we have

∂P

∂r
= η

[
∂

∂r

(
1

r

∂

∂r
(rvr)

)]
= 0 (96)

∂P

∂z
= η

[
1

r

∂

∂r

(
r
∂vz
∂r

)]
+ ρgzh =

PL − Po
L

(97)

If we rearrange the second equation,

1

r

∂

∂r

(
r
∂vz
∂r

)
=

1

η

(
PL − Po

L
− ρgzh

)
(98)

Multiplying both sides by r and integrating with respect to r, we have

r
∂vz
∂r

=
r2

2η

(
PL − Po

L
− ρgzh

)
+ Co (99)



where Co is a constant of integration, to be determined by the boundary conditions. We can pull
the same trick twice, this time dividing by r and integrating with respect to r, and arrive at

vz =
r2

4η

(
PL − Po

L
− ρgzh

)
+ Cor + C1 (100)

where C1 is a second constant of integration. We can eliminate Co by enforcing the condition that
at the center of the pipe, r = 0, ∂vz/∂r must vanish. We can find C1 by enforcing the condition
that vz(R)=0:

vz(R) = 0 =
R2

4η

(
PL − Po

L
− ρgz

)
+ C1 =⇒ C1 =

R2

4η

(
Po − PL

L
− ρgz

)
(101)

This fully determines the radial variation of the vertical velocity of the fluid in the pipe:

vz(r) =

(
Po − PL

L
− ρgzh

)
R2 − r2

4η
(102)

There are two terms: one due to the applied pressure gradient, the other due to hydrostatic gravity-
induced flow. Given this distribution, we could find the volumetric flow rate Q (e.g., cubic meters
per second) by integrating vz(r) over annular cross sections of the pipe. Each such annulus has
width dr, and sits at a radius r from the pipe center with r running from 0 to R. The area of
each annulus is dA= 2πr dr, and over a pipe length dl= vz(r) dt in a time dt, represents a volume
dV =dAdl. The flow rate through this annulus is dQ=dV/dt= 2πrvz(r) dr. Put another way, we
find Q by integrating the velocity distribution over the area of annular slices of our pipe of area
2πr dr.x The volume flow rate is then

Q =

R∫

0

2πrvz(r) dr =

R∫

0

2πr

(
Po − PL

L
− ρgzh

)
R2 − r2

4η
dr =

πR4

8η

(
Po − PL

L
− ρgzh

)

(103)

Again, the first term is flow due to the pressure difference, while the second is the flow due to
the change in height of the pipe over its length. If h is positive, the far end is higher than the
near end, and the gravity flow is from L to 0. If h is negative, the flow is “downhill” from 0 to L.
Correspondingly, if Po>PL the pressure gradient causes flow from 0 to L, and for PL>Po, the flow
is from L to 0. For a horizontal pipe, or at least one where ρgzh is small compared to the pressure
gradient, we find

Q =
πR4 (Po − PL)

8ηL
(104)

xWe could also find the average value of vz(r) over the cross section and multiply it by the area and arrive at the
same result.



This is the famous Hagen-Poiseuille law, and the basis for most plumbing you will encounter. The
R4 dependence is dramatic: halving the diameter of the pipe decreases the flow rate by a factor
of 16! One can also rearrange this in a more practical way: given a desired flow rate Q, a given
fluid of viscosity η, and a pipe of diameter R, what pressure difference ∆P =Po − PL is required?
Assuming the pipe is over level ground, we can neglect the ρgzh contribution to the flow, and

∆P =
8ηlQ

πR4
(105)

This also tells you that the pressure drops uniformly with the length of the pipe, and it scales
linearly with viscosity and flow rate.

9.2 Stoke’s flow around a solid sphere

Now let us consider the steady flow of an incompressible fluid around a dense, solid sphere, or
equivalently, a solid sphere falling in a static fluid. For small spheres, this leads to measurement
known as the falling sphere viscometer, as we will find that the terminal velocity of the falling sphere
will be inversely proportional to the viscosity. As in the example above, in this case we may neglect
the “acceleration” term in the Navier-Stokes equation 1

2ρ∇v
2 if we are looking for a steady solution:

−∇P + η∇2v + ρg = 0 (106)

Further simplification is possible in this case due to the symmetry of the problem. Let the fluid flow
be along the z axis with constant velocity V∞, with the solid sphere of radius R at the origin. In
this case, by symmetry the fluid momentum is clearly independent of ϕ (the angle in the xy plane).
In spherical coordinates the Navier-Stokes and continuity equations read

−∂P
∂r

+ η

[
∇2vr −

2vr
r2
− 2

r2

∂vθ
∂θ
− 2

r2
vθ cot θ

]
+ ρgr = 0 (107)

−1

r

∂P

∂θ
+ η

[
∇2vθ +

2

r2

∂vr
∂θ
− vθ

r2 sin2 θ

]
+ ρgθ = 0 (108)

1

r2

∂

∂r

(
r2vr

)
+

1

r sin θ

∂

∂θ
(vθ sin θ) = 0 (109)

Here we have expanded the θ and r portions of the gradient operators in spherical coordinates.
Perhaps surprisingly, the stress distribution, pressure distribution, and velocity components can be
found analytically:



τrθ =
3

2

ηV∞
R

(
R

r

)4

sin θ (110)

P = Po − ρgz −
3

2

ηV∞
R

(
R

r

)2

cos θ (111)

vr = V∞

(
1− 3

2

(
R

r

)
+

1

2

(
R

r

)3
)

cos θ (112)

vθ = −V∞

(
1− 3

4

(
R

r

)
− 1

4

(
R

r

)3
)

sin θ (113)

Note the following conditions must be met at the sphere’s boundary: r=R, vr = vθ = 0, and addi-
tionally at r=∞, vz =V∞. Equation 111 is readily parseable: Po is the pressure in the plane z=0

far from the sphere, −ρgz is the hydrostatic pressure effect, and the term with V∞ results from fluid
flow around the sphere. These equations are valid for Reynolds numbers less than approximately
one. In Fig. 9, we show fluid flow around a sphere under these conditions.

Figure 9: Forces on and streamlines around a sphere in Stokes flow. From http: // en. wikipedia. org/ wiki/ File: Stokes_
sphere. svg .

What we are interested in now is the force on the sphere due to this flow. The normal force (along
the z axis) acting on the solid sphere is due to the pressure given by Eq. 111 with r = R and
z=R cos θ:

P (r = R) = Po − ρgR cos θ − 3

2

ηV∞
R

cos θ (114)

http://en.wikipedia.org/wiki/File:Stokes_sphere.svg
http://en.wikipedia.org/wiki/File:Stokes_sphere.svg


The net upward force in the z direction due to the pressure difference on the ‘top’ and ‘bottom’
portions of the sphere is found by multiplying this pressure times the infinitesimal bit of surface
area over which it acts, R2 sin θdθ dϕ and integrating over the surface of the sphere:

Fn =

2π∫

0

π∫

0

[
Po − ρgR cos θ − 3

2

ηV∞
R

cos θ

]
R2 sin θdθ dϕ (115)

Fn =
4

3
πR3ρg + 2πηRV∞ (116)

We recover two terms for the normal force: the first is the buoyant force and the second the form
drag. At each point on the surface, there is also a shear stress acting tangentially, −τrθ. This
tangential force, since we are dealing with a curved surface, has both x−y and z components. Over
the whole sphere, the former will vanish by symmetry, but the latter will give rise to a net force for
any non-zero fluid velocity. On any infinitesimal patch of surface, the z-component of this tangential
force is (−τrθ) (− sin θ)R2 sin θdθ dϕ, and once again integrating over the sphere’s surface we find

Ft =

2π∫

0

π∫

0

(τrθ|r=R sin θ)R2 sin θ dθ dϕ (117)

From Eq 110,

τrθ

∣∣∣∣
r=R

=
3

2

ηV∞
R

sin θ (118)

which results in a net frictional drag from the tangential flow of

Ft = 4πηRV∞ (119)

Thus, the total force on our sphere in the flowing fluid is

F =
4

3
πR3ρg + 6πηRV∞ (120)

The force has two terms, as expected: the first due to gravity (the weight of the fluid), exerted
even if the fluid is stationary, and the second associated with fluid motion, sometimes called the
“drag force.” Both forces act in the same direction, opposing the direction of fluid flow. Sometimes,
you will see the quantity 6πηR= b called the “Stokes radius,” leading to a nice form of the force
equation:

F =
4

3
πR3ρg + bV∞ =

mspheregρ

ρsphere
+ bV∞ (121)

Equation 120 is known as Stoke’s law, and from it we may determine the terminal velocity of a



falling sphere. Consider a sphere falling in a stagnant fluid of density ρs. In this case V∞ is the
relative velocity of the fluid with respect to the sphere, which in this case is just the velocity of
the falling sphere since the fluid is stationary. The static and drag Stoke’s forces act opposite the
direction that the sphere falls, and at the terminal velocity Vt, precisely balance the sphere’s weight.
If the sphere has density ρs, this means

4

3
πR3ρg + 6πηRVt =

4

3
πR3ρsg (122)

This leads to a terminal velocity of

Vt =
2gR2 (ρs − ρ)

9η
(123)

As expected, it is the relative density of fluid and solid that determine the behavior of the sphere: if
the sphere is more dense than the fluid, it sinks, and if it is less dense than the fluid, it rises. If the
particle radius and densities are known, a velocity measurement allows one to deduce the viscosity
of a fluid. Conversely, if the densities and viscosity are known, one can find the radius of a small
particle. The latter is useful in so-called fluidized bed particle separators, allowing one to separate
particles by their size distribution.

9.3 Correction to Stoke’s law for small velocities

One small detail remains: Stoke’s law becomes inaccurate when the velocity of falling droplets is less
than about 10−3 m/s. Droplets having this and smaller velocities have radii on the order of 2µm
for free-fall in air, comparable to the mean free path of air molecules, a condition which violates
one of the assumptions made in deriving Stokes’s law. We must add a correction to Stoke’s law.
As it turns out, the correction is straightforward: we need only replace the viscosity by an effective
value, which includes a correction factor (the Cunningham factor):

η −→ ηeff =
η

1 + b
Pr

(124)

Here P is the atmospheric pressure, r is the radius of the drop, and b is a constant factor.

Viscosity of dry air as a function of temperature

The viscosity of air can be computed using Sutherland’s formulaxi

η(T ) = ηo

(
T

To

)3/2 To + S

T + S
(125)

xiFrom http://www.epa.gov/EPA-AIR/2005/July/Day-13/a11534d.htm and http://en.wikipedia.org/wiki/
Viscosity.

http://www.epa.gov/EPA-AIR/2005/July/Day-13/a11534d.htm
http://en.wikipedia.org/wiki/Viscosity
http://en.wikipedia.org/wiki/Viscosity


Here η is the viscosity in poise (Ns/m2) at the input temperature T , µo is the reference viscosity in
poise (Ns/m2) at a reference temperature To, T is the input temperature in Kelvin, To is a reference
temperature in Kelvin, and S is an effective temperature called Sutherland’s constant. For dry air,
ηo=1.716× 10−5 Ns/m2 at To=273K, S=111K, valid over a temperature range of 0−555K. xii

xiiReference data: at 300K, η=1.846×10−5 Ns/m2. Table A.4 in F.P. Incropera and D.P. DeWitt, Fundamentals of
Heat and Mass Transfer, 3rd ed, John Wiley, New York, NY, 1990. See also table B.4 in D.R. Poirier and G.H. Geiger,
Transport Phenomena in Materials Processing, TMS, Warrendale, PA, 1994)


