Noise floor example?

Curve fitting

P. LeClair
PH 4/591 Fall 2022

based on material from A. Piepke

THE UNIVERSITY OF ALABAMA ${ }^{\circ}$

Summary statistics

We have studied how to summarize a data set y_{i} of $i=1, \ldots, N$ independent measurements with a mean and standard deviation:

Mean:

$$
\langle y\rangle=\frac{1}{N} \cdot \sum_{i=1}^{N} y_{i}
$$

Standard deviation:

$$
s^{2}=\frac{1}{N-1} \cdot \sum_{i=1}^{N}\left(y_{i}-\langle y\rangle\right)^{2}
$$

What do we do if the data exhibits a linear correlation? Assume the variation in i goes along with changing some observable x not plotted here.

Linear relationships

This data better described by line

$$
y=f(x)=p_{2} \cdot x+p_{1}
$$

How do we find the optimal p_{1} and p_{2} ?

- Assume fluctuations are random (Gaussian), errors symmetric.
- Assume the data represents the most likely outcome of the measurement.
- Then: principle of maximum likelihood allows parameter estimation.

Model functions

- N data pairs $\left(x_{i}, y_{i}\right)$.
- Want $f\left(x_{i}\right)$ that describes y_{i} so $f\left(x_{i}\right) \approx y_{i}$.
- The function f is our fit model. What is reasonable form for f ?
- Justified by how well f fits the data and physical plausibility
- Often starts by eyeballing it!
- f needs M tunable parameters p_{1}, \ldots, p_{M}, therefore:

$$
-y_{i} \approx f\left(x_{i} ; p_{1}, \ldots, p_{M}\right)
$$

- Once a functional form has been chosen, game is to determine the numerical values of p_{i} (and their errors) that best fit the data.
- Assume the statistical fluctuations of the data are Gaussian

Likelihood

- Probability P for observing y_{i} for an independent variable x_{i} is given by:
$P\left(x_{i} ; p_{1}, \ldots, p_{M}\right) d x=\frac{1}{\sqrt{2 \cdot \pi}} \cdot \frac{1}{s_{i}} \cdot \exp \left(-\frac{\left[y_{i}-f\left(x_{i}, p_{1}, \ldots, p_{M}\right)\right]^{2}}{2 \cdot s_{i}^{2}}\right) d x$
- Assume each y_{i} subject to fluctuations of known standard dev s_{i} (but x_{i} free of fluctuations)
- f plays the role of the underlying true value of y
- Want p_{1}, \ldots, p_{M} that maximize the likelihood of observing the union of all N pairs $\left(x_{i}, y_{i}\right)$.

Likelihood

- Maximize product of individual data-pair wise probs:
$P_{S}=\prod_{i=1}^{N} P\left(x_{i} ; y_{i}, p_{1}, \ldots, p_{M}\right)$
Easier to find the max of $\ln P_{S} \ldots \ln (\mathrm{x})$ is monotonic

$$
\begin{aligned}
\ln \left(P_{s}\right) & =\sum_{i=1}^{N} \ln \left[P\left(x_{i} ; y_{i}, p_{1}, \ldots, p_{M}\right)\right] \\
& =\sum_{i=1}^{N} \ln \left[\frac{1}{\sqrt{2 \cdot \pi}} \cdot \frac{1}{s_{i}} \cdot \exp \left(-\frac{\left[y_{i}-f\left(x_{i}, p_{1}, \ldots, p_{M}\right)\right]^{2}}{2 \cdot s_{i}^{2}}\right)\right]
\end{aligned}
$$

Likelihood

$\ln \left(P_{s}\right)=\sum_{j=1}^{N} \ln \left[\frac{1}{\sqrt{2 \cdot \pi}} \cdot \frac{1}{s_{i}} \cdot \exp \left(-\frac{\left[y_{i}-f\left(x_{i}, p_{1}, \ldots, p_{M}\right)\right]^{2}}{2 \cdot s_{i}^{2}}\right)\right]$
$\ln \left(P_{s}\right)=\sum_{i=1}^{N} \ln \left(\frac{1}{\sqrt{2 \cdot \pi}} \cdot \frac{1}{s_{i}}\right)-\frac{1}{2} \cdot \sum_{i=1}^{N} \frac{\left[y_{i}-f\left(x_{i}, p_{1}, \ldots, p_{M}\right)\right]^{2}}{s_{i}^{2}}$

- Set of p_{j} that maximizes the likelihood are the best fit parameters.

$$
\frac{\partial P_{S}\left(x_{i} ; y_{i}, p_{1}, \ldots, p_{M}\right)}{\partial p_{j}}=0
$$

Likelihood

does not depend on p_{j}, all derivatives are 0
minus sign: likelihood is maximal when this expression is minimal

$$
\chi^{2}=\sum_{i=1}^{N} \frac{\left[y_{i}-f\left(x_{i} ; p_{1}, \ldots, p_{M}\right)\right]^{2}}{s_{i}^{2}}
$$

- This is the chi-square statistic.
- Measures the deviation of our data from the fit function f.
- Choose p_{j} to minimize χ^{2} and thus maximize likelihood

Chi square

$\chi^{2}\left(N, x_{i} ; y_{i}, s_{i}, p_{1}, \ldots, p_{M}\right)=\frac{1}{N-M} \cdot \sum_{i=1}^{N} \frac{\left[y_{i}-f\left(x_{i}, ; p_{1}, \ldots, p_{M}\right)\right]^{2}}{s_{i}^{2}}$
This method of finding the best-fit f is called chi-square minimization. It works for just about any function.

Obtain the unknown parameters p_{i} by simultaneously solving the M equations:

$$
\frac{\partial}{\partial p_{j}} \chi^{2}=\frac{\partial}{\partial p_{j}} \sum_{i=1}^{N} \frac{\left[y_{i}-f\left(x_{i} ; p_{1}, \ldots, p_{M}\right)\right]^{2}}{s_{i}^{2}}=0 \quad \text { for } j=1, \ldots, M
$$

Usually leads to a system of M non-linear equations that can't be solved analytically ... numerical methods required

Numerical methods

- The linear case is analytically solvable

$$
-y_{i}=f\left(x_{i}\right)=p_{2} \cdot x_{i}+p_{1}
$$

- Every decent analysis program does this
- Excel does the absolute bare minimum
- Some will do much more - matlab, mathematica, originlab, python ... many options, learn one of these.

Linear case

Describe data with linear function: (each measurement has own s_{i})

$$
\chi^{2}=\frac{1}{N-M} \cdot \sum_{i=1}^{N} \frac{\left(y_{i}-p_{2} \cdot x_{i}-p_{1}\right)^{2}}{s_{i}^{2}}
$$

Find the values of p_{1} and p_{2} which minimize χ^{2}

$$
\frac{\partial \chi^{2}}{\partial p_{2}}=0 \quad \text { and } \quad \frac{\partial \chi^{2}}{\partial p_{1}}=0
$$

2 eqns 2 unknowns
Need at least two data pairs to solve this problem; more improve precision.
$\frac{\partial \chi^{2}}{\partial p_{2}}=-2 \cdot \sum_{i=1}^{N} \frac{\left(y_{i}-p_{2} \cdot x_{i}-p_{1}\right) \cdot x_{i}}{s_{i}^{2}}=0$
$\frac{\partial \chi^{2}}{\partial p_{1}}=-2 \cdot \sum_{i=1}^{N} \frac{\left(y_{i}-p_{2} \cdot x_{i}-p_{1}\right)}{s_{i}^{2}}=0$
Simultaneously solve two inhomogeneous linear equations.

Linear case

$-\sum_{i=1}^{N} \frac{y_{i} \cdot x_{i}}{s_{i}^{2}}+p_{2} \cdot \sum_{i=1}^{N} \frac{x_{i}^{2}}{s_{i}^{2}}+p_{1} \cdot \sum_{i=1}^{N} \frac{x_{i}}{s_{i}^{2}}=0$
$-\sum_{i=1}^{N} \frac{y_{i}}{s_{i}^{2}}+p_{2} \cdot \sum_{i=1}^{N} \frac{x_{i}}{s_{i}^{2}}+p_{1} \cdot \sum_{i=1}^{N} \frac{1}{s_{i}^{2}}=0$
Algebra ensues ...
$p_{1}=\frac{1}{\Delta} \cdot\left(\sum_{i=1}^{N} \frac{x_{i}^{2}}{s_{i}^{2}} \cdot \sum_{i=1}^{N} \frac{y_{i}}{s_{i}^{2}}-\sum_{i=1}^{N} \frac{x_{i}}{s_{i}^{2}} \cdot \sum_{i=1}^{N} \frac{x_{i} \cdot y_{i}}{s_{i}^{2}}\right)$
$p_{2}=\frac{1}{\Delta} \cdot\left(\sum_{i=1}^{N} \frac{1}{s_{i}^{2}} \cdot \sum_{i=1}^{N} \frac{x_{i} \cdot y_{i}}{s_{i}^{2}}-\sum_{i=1}^{N} \frac{x_{i}}{s_{i}^{2}} \cdot \sum_{i=1}^{N} \frac{y_{i}}{s_{i}^{2}}\right)$
Solve for p_{1} and p_{2}.
Tedious; details in appendix

Linear result

Slope p_{2} of the fit line:

$$
p_{2}=\frac{1}{\Delta} \cdot\left(\sum_{i=1}^{N} \frac{1}{s_{i}^{2}} \cdot \sum_{i=1}^{N} \frac{x_{i} \cdot y_{i}}{s_{i}^{2}}-\sum_{i=1}^{N} \frac{x_{i}}{s_{i}^{2}} \cdot \sum_{i=1}^{N} \frac{y_{i}}{s_{i}^{2}}\right)
$$

i : number of measurements, $i=1,2, \ldots, N$
x_{i} : independent variable
y_{i} : dependent variable
s_{i} : standard deviation of y_{i} $s_{p 2}$: standard deviation of p_{2} $s_{p l}$: standard deviation of p_{1}
$\Delta=\sum_{i=1}^{N} \frac{1}{s_{i}^{2}} \cdot \sum_{i=1}^{N} \frac{x_{i}^{2}}{s_{i}^{2}}-\left(\sum_{i=1}^{N} \frac{x_{i}}{s_{i}^{2}}\right)^{2}$

Linear result (equal s_{i})

If all uncertainties are equal ($s=s_{i}$), simple enough Excel can do it:
Slope p_{2} of the fit line:
$p_{2}=\frac{1}{\Delta^{\prime}} \cdot\left(N \cdot \sum_{i=1}^{N} x_{i} \cdot y_{i}-\sum_{i=1}^{N} x_{i} \cdot \sum_{i=1}^{N} y_{i}\right)$
Intercept p_{1} of the fit line:

$$
\Delta^{\prime}=N \cdot \sum_{i=1}^{N} x_{i}^{2}-\left(\sum_{i=1}^{N} x_{i}\right)^{2}
$$

$$
p_{1}=\frac{1}{\Delta^{\prime}} \cdot\left(\sum_{i=1}^{N} x_{i}^{2} \cdot \sum_{i=1}^{N} y_{i}-\sum_{i=1}^{N} x_{i} \cdot \sum_{i=1}^{N} x_{i} \cdot y_{i}\right)
$$

Linear result - uncertainty

- If all uncertainties can be assumed to be equal ($s=s_{i}$), you can determine this common uncertainty from the data.
- e.g. uncertainties are instrumental and you've used the same instrument for all

$$
s^{2}=\frac{1}{N-2} \cdot \sum_{i=1}^{N}\left(y_{i}-p_{2} \cdot x_{i}-p_{1}\right)^{2}
$$

Linear result - uncertainty

What about the error on the fitted slope p_{2} and intercept p_{1} ? (general case of unequal s_{i} again)

$$
\frac{\partial \chi^{2}}{\partial p_{2}}=p_{1} \cdot \sum_{i} \frac{x_{i}}{s_{i}^{2}}+p_{2} \cdot \sum_{i} \frac{x_{i}^{2}}{s_{i}^{2}}-\sum_{i} \frac{x_{i} \cdot y_{i}}{s_{i}^{2}}=0
$$

Solve for slope $p_{2} \ldots$
The slope p_{2} and intercept p_{1} are

$$
p_{2}=\frac{\sum \frac{x_{i} \cdot y_{i}}{s_{i}^{2}}-p_{1} \cdot \sum \frac{x_{i}}{s_{i}^{2}}}{\sum \frac{x_{i}^{2}}{s_{i}^{2}}}
$$

Must be taken into account when calculating the error of interpolated or extrapolated values $y=p_{2} \cdot x+p_{1}$

Linear result - uncertainty

We use error propagation to find the errors on p_{1} and p_{2}, assuming the errors s_{j} of the individual measurements y_{j} are uncorrelated.

$$
s_{p_{2}}^{2}=\sum_{i=1}^{N}\left(\frac{\partial p_{2}}{\partial y_{i}}\right)^{2} \cdot s_{i}^{2} \quad s_{p_{1}}^{2}=\sum_{i=1}^{N}\left(\frac{\partial p_{1}}{\partial y_{i}}\right)^{2} \cdot s_{i}^{2}
$$

After some manipulation:

$$
s_{p_{2}}^{2}=\frac{1}{\Delta} \cdot \sum_{i=1}^{N} \frac{1}{s_{i}^{2}}
$$

$$
s_{p_{1}}^{2}=\frac{1}{\Delta} \cdot \sum_{i=1}^{N} \frac{x_{i}^{2}}{s_{i}^{2}}
$$

Where, as before: $\quad \Delta=\sum_{i=1}^{N} \frac{1}{s_{i}^{2}} \cdot \sum_{i=1}^{N} \frac{x_{i}^{2}}{s_{i}^{2}}-\left(\sum_{i=1}^{N} \frac{x_{i}}{s_{i}^{2}}\right)^{2}$

Linear result - uncertainty

For the special case of equal uncertainties $s=s_{i}$ for all $y_{i}{ }^{-}$ values the uncertainties $s_{p_{1}}$ and $s_{p_{2}}$ of the fitted intercept p_{1} and slope p_{2} are:

$$
s_{p_{1}}^{2}=\frac{s^{2}}{\Delta^{\prime}} \cdot \sum_{i=1}^{N} x_{i}^{2} \quad s_{p_{2}}^{2}=N \cdot \frac{s^{2}}{\Delta^{\prime}}
$$

$$
\Delta^{\prime}=N \cdot \sum_{i=1}^{N} x_{i}^{2}-\left(\sum_{i=1}^{N} x_{i}\right)^{2}
$$

$$
s^{2}=\frac{1}{N-2} \cdot \sum_{i=1}^{N}\left(y_{i}-p_{2} \cdot x_{i}-p_{1}\right)^{2}
$$

Linear result - uncertainty

- In Excel - use the function LINEST. Syntax: =LINEST(y-array,x-array,TRUE,TRUE)
- You'll need to look up the details.
- This routine is what EXCEL calls an "array formula", it needs to be declared as such.
- Array formulas typically require some output to be spread over multiple cells, you need to define which cells.
- Again, look up how to do this.

Summary

$$
f(x)=p_{2} \cdot x+p_{1}
$$

N correlated pairs x_{i} and y_{i}
Intercept: $\quad p_{1}=\frac{1}{\Delta^{\prime}} \cdot\left(\sum_{i=1}^{N} x_{i}^{2} \cdot \sum_{i=1}^{N} y_{i}-\sum_{i=1}^{N} x_{i} \cdot \sum_{i=1}^{N} x_{i} \cdot y_{i}\right)$
Error in intercept: $\quad s_{p_{1}}=\sqrt{\frac{\sum_{i=1}^{N} x_{i}^{2}}{\Delta^{\prime}}} \cdot s$
Slope: $\quad p_{2}=\frac{1}{\Delta^{\prime}} \cdot\left(N \cdot \sum_{i=1}^{N} x_{i} \cdot y_{i}-\sum_{i=1}^{N} x_{i} \cdot \sum_{i=1}^{N} y_{i}\right)$
Error in slope: $\quad s_{p_{2}}=\sqrt{\frac{N}{\Delta^{\prime}}} \cdot s$

$$
\Delta^{\prime}=N \cdot \sum_{i=1}^{N} x_{i}^{2}-\left(\sum_{i=1}^{N} x_{i}\right)^{2} \quad s^{2}=\frac{1}{N-2} \cdot \sum_{i=1}^{N}\left(y_{i}-p_{2} \cdot x_{i}-p_{1}\right)^{2}
$$

N correlated pairs x_{i} and y_{i} with individual y-errors s_{i}
Intercept: $p_{1}=\frac{1}{\Delta} \cdot\left(\sum_{i=1}^{N} \frac{x_{i}^{2}}{s_{i}^{2}} \cdot \sum_{i=1}^{N} \frac{y_{i}}{s_{i}^{2}}-\sum_{i=1}^{N} \frac{x_{i}}{s_{i}^{2}} \cdot \sum_{i=1}^{N} \frac{x_{i} \cdot y_{i}}{s_{i}^{2}}\right)$
Error in intercept: $\quad s_{p_{1}}=\sqrt{\frac{1}{\Delta} \cdot \sum_{i=1}^{N} \frac{x_{i}^{2}}{s_{i}^{2}}}$
Slope: $\quad p_{2}=\frac{1}{\Delta} \cdot\left(\sum_{i=1}^{N} \frac{1}{s_{i}^{2}} \cdot \sum_{i=1}^{N} \frac{x_{i} \cdot y_{i}}{s_{i}^{2}}-\sum_{i=1}^{N} \frac{x_{i}}{s_{i}^{2}} \cdot \sum_{i=1}^{N} \frac{y_{i}}{s_{i}^{2}}\right)$
Error in slope: $\quad s_{p_{2}}=\sqrt{\frac{1}{\Delta} \cdot \sum_{i=1}^{N} \frac{1}{s_{i}^{2}}}$

$$
\Delta=\sum_{i=1}^{N} \frac{1}{s_{i}^{2}} \cdot \sum_{i=1}^{N} \frac{x_{i}^{2}}{s_{i}^{2}}-\left(\sum_{i=1}^{N} \frac{x_{i}}{s_{i}^{2}}\right)^{2}
$$

Going further - linearization

- Both the slope and intercept are determined by simple sums; no complicated iterative process is needed to get the fit results
- In many cases, experimental problems can be linearized by redefining experimental variables
- Then, linear regression offers a simple means to find a description of the data.

Example: Rydberg constant

- Atomic spectra - wavelengths of transitions in the hydrogen atom (Balmer series).
- Measure the Rydberg constant, R_{H}, in Balmer formula
- Rydberg formula: $\frac{1}{\lambda}=R_{H} \cdot\left(\frac{1}{n_{1}^{2}}-\frac{1}{n_{2}^{2}}\right)$
- Balmer series: $n_{1}=2$ and $n_{2}=3, \ldots, \infty$.
- Given n, λ data, how to extract R_{H} ?

Example: Rydberg constant

Data from a hydrogen lamp via the Ocean Optics spectrometer.

n_{2}	λ $(n m)$	s_{λ} $(n \mathrm{~m})$
4	484	4.0
5	433	3.0
6	408	2.5
7	395	3.0
8	387	1.0

First attempt: plot the raw data, wavelength versus main quantum number of final state.

Balmer series of hydrogen

Doesn't help, the problem is obviously non-linear.

Example: Rydberg constant

Now linearize the problem with: $\frac{1}{\lambda}=-R_{H} \cdot\left(\frac{1}{n_{2}^{2}}\right)+\frac{R_{H}}{n_{1}^{2}}$.

n_{2}	$1 / n_{2}{ }^{2}$	λ (nm)	s_{λ} (nm)	$1 / \lambda$ $\left(\mathrm{nm}^{-1}\right)$	$\mathrm{s}_{1 / \lambda}$ $\left(\mathrm{nm}^{-1}\right)$
4	0.063	484	4.0	$2.066 \mathrm{E}-03$	$1.71 \mathrm{E}-05$
5	0.040	433	3.0	$2.309 \mathrm{E}-03$	$1.60 \mathrm{E}-05$
6	0.028	408	2.5	$2.451 \mathrm{E}-03$	$1.50 \mathrm{E}-05$
7	0.020	395	3.0	$2.532 \mathrm{E}-03$	$1.92 \mathrm{E}-05$
8	0.016	387	1.0	$2.584 \mathrm{E}-03$	$6.68 \mathrm{E}-06$

Balmer series of hydrogen
Translate errors of y-values, from λ to $1 / \lambda$. Error propagation ftw:

$$
\begin{aligned}
\frac{d\left(\frac{1}{\lambda}\right)}{d \lambda} & =-\frac{1}{\lambda^{2}} \\
s_{1 / \lambda} & =\frac{s_{\lambda}}{\lambda^{2}}
\end{aligned}
$$

Now apply linear regression to find the slope \& Rydberg constant.

Details.

n_{2}	$x \equiv 1 / n_{2}{ }^{2}$	$\lambda(\mathrm{nm})$	$1(\mathrm{~nm})$	$\begin{aligned} & y \equiv 1 / \lambda \\ & \left(\mathrm{nm}^{-1}\right) \end{aligned}$	$\mathrm{s}_{1 / \lambda}\left(\mathrm{nm}^{-1}\right)$	$\mathrm{xi}^{2} / \mathrm{si}^{2}$	yi/si ${ }^{2}$	$\mathrm{x}_{\mathrm{i}} / \mathrm{si}^{2}$	$\mathrm{x}_{\mathrm{i}} \mathrm{y}_{\mathrm{i}} / \mathrm{si}^{2}$	1/si ${ }^{2}$
4	0.0625	484	4	$2.066 \mathrm{E}-03$	$1.71 \mathrm{E}-05$	$1.34 \mathrm{E}+07$	7.086E+06	$2.14 \mathrm{E}+08$	$4.429 \mathrm{E}+05$	$3.43 \mathrm{E}+09$
5	0.0400	433	3	$2.309 \mathrm{E}-03$	$1.60 \mathrm{E}-05$	6.25E+06	$9.020 \mathrm{E}+06$	$1.56 \mathrm{E}+08$	$3.608 \mathrm{E}+05$	$3.91 \mathrm{E}+09$
6	0.0278	408	2.5	$2.451 \mathrm{E}-03$	$1.50 \mathrm{E}-05$	$3.42 \mathrm{E}+06$	$1.087 \mathrm{E}+07$	$1.23 \mathrm{E}+08$	$3.019 \mathrm{E}+05$	$4.43 \mathrm{E}+09$
7	0.0204	395	3	$2.532 \mathrm{E}-03$	$1.92 \mathrm{E}-05$	$1.13 \mathrm{E}+06$	$6.848 \mathrm{E}+06$	5.52E+07	$1.398 \mathrm{E}+05$	$2.70 \mathrm{E}+09$
8	0.0156	387	1	$2.584 \mathrm{E}-03$	6.68E-06	$5.48 \mathrm{E}+06$	$5.796 \mathrm{E}+07$	$3.50 \mathrm{E}+08$	$9.056 \mathrm{E}+05$	$2.24 \mathrm{E}+10$
Sum						2.97E+07	$9.18 \mathrm{E}+07$	8.99E+08	$2.15 \mathrm{E}+06$	$3.69 \mathrm{E}+10$

Perform all multiplications and products of the sums to get $p_{1}, p_{2} \rightarrow n_{1}, R_{H} \ldots$
$p_{2}=-R_{H}=(1.109 \pm 0.036) \cdot 10^{-7} m(y$-axis is in $n m$, I converted to $m)$.
n_{1} from intercept: $n_{1}=\sqrt{\frac{R_{H}}{p_{1}}}=2.005$ but what's the error of n_{1} ?
Tabulated value: $R_{H}=1.097 \cdot 10^{-7} \mathrm{~m}$
In practice: don't have to do manually with sums, could use LINEST in Excel

Linear fit with uncertainties

- Red: neglect
- Blue: include
- Huge for intercept
- Non-negligible for slopı (curves with or without x error same on this scale)

Mode	Slope (err)	Intercept (err)
Ignore both	5.02 ± 0.17	0.32 ± 3.21
Include y error	5.67 ± 0.08	-15.1 ± 1.5
Include y and x errors	5.48 ± 0.12	-12.5 ± 1.8

Power laws

- "I know, let's plot it on a log scale and the power is the slope"
- "I know, we can use different power laws in different regimes"
- Uncertainty and noise floor ... propagate/subtract
- Nothing is really a power law except in a narrow range
- Don't piece together models without (logical) glue

A better way

- If the model is $y=A x^{n}$
- Then $\quad \ln y=n \ln x+\ln A$
- It is true the slope of a $\ln y-\ln x$ plot has slope n, but it is easy to fool yourself
- Better: logarithmic derivative

$$
\frac{\partial \ln y}{\partial \ln x}=\frac{\partial}{\partial \ln x}(n \ln x+\ln A)=n
$$

- Much easier to judge if plot is just a constant

Exercise

- From here you learn by doing
- I'll give you data - resistivity vs temperature.
- You come up with a model and fit
- If possible - reason for model? Physics?
- Not including uncertainty for now
- Report fit parameters with uncertainty and (chi-square)/DOF (and a plot obviously)

Data and plausible models

- Will give csv file of data
- Plausible models? Many!
- Material - VO_{2}

$\rho(T)=\rho_{o}+\rho_{1} e^{-\alpha T} \quad$ semiconductor-like
$\rho(T)=\rho_{o}+\rho_{1} e^{\Delta / T} \quad$ activated transport
$\rho(T)=\rho_{o}+\rho_{1} e^{\sqrt{(\Delta / T)}}$ Mott variable-range hopping
$\rho(T)=\rho_{o}+\beta T^{n} \quad$ power law - many models

Appendices

- Further details on uncertainties of extrapolated and interpolated data
- Some derivations

Uncertainties on Extrapolated and Interpolated Values

After performing linear regression on $x-y$-data pairs, the fit line's utility is often to use it to determine the y-values for x-values you haven't directly Observed during your "calibration". If these x values are bracket by $x_{\min }$ and $x_{\max }$ such as $x_{\min } \leq x \leq x_{\max }$ you call this interpolation. If x-lies outside the "calibrated" range you call this process extrapolation. The question is: how do we determine the uncertainty on interpolated and extrapolated y-values?

> We now know how to fit this data with the equation $y=f(x)=m$. $x+b$. We get the values of m and b and their uncertainties s_{m} and s_{b} through linear regression.

Suppose we want to calculate the value of \hat{y} at some value of x, where we did not make a measurement, using the linear regression equation. What is the uncertainty on $s_{\hat{y}}$ on \hat{y} ?

My apology: there is a terminology change here. Before: $f(x)=p_{2}$. $x+p_{1}$. For the rest of this section I use: $f(x)=m \cdot x+b$. I didn't feel like changing 50+ equations...

Another reminder: m and b are correlated because
$m=\frac{\sum_{i} \frac{x_{i} \cdot y_{i}}{s_{i}^{2}}-b \cdot \sum_{i} \frac{x_{i}}{s_{i}^{2}}}{\sum_{i} \frac{x_{i}^{2}}{s_{i}^{2}}}$
Note: the sums all go over $i=1, \ldots, N$.
From here on the summation index will be dropped from the equations to reduce the number of symbols.

Therefore to calculate the error on $f(x)$ we need to propagate the errors on m and b, including the covariant term.
$s_{\hat{y}}^{2}=\left(\frac{\partial f(x)}{\partial m}\right)^{2} \cdot s_{m}^{2}+\left(\frac{\partial f(x)}{\partial b}\right)^{2} \cdot s_{b}^{2}+2 \cdot s_{m b} \cdot\left(\frac{\partial f(x)}{\partial m}\right) \cdot\left(\frac{\partial f(x)}{\partial b}\right)$

$$
s_{\hat{y}}^{2}=\left(\frac{\partial f(x)}{\partial m}\right)^{2} \cdot s_{m}^{2}+\left(\frac{\partial f(x)}{\partial b}\right)^{2} \cdot s_{b}^{2}+2 \cdot s_{m b} \cdot\left(\frac{\partial f(x)}{\partial m}\right) \cdot\left(\frac{\partial f(x)}{\partial b}\right)
$$

Since $f(x)=m \cdot x+b$:

$$
\begin{aligned}
& \frac{\partial f(x)}{\partial m}=x \quad \text { and } \quad \frac{\partial f(x)}{\partial b}=1 \\
& s_{\hat{y}}^{2}=x^{2} \cdot s_{m}^{2}+s_{b}^{2}+2 \cdot s_{m b} \cdot x
\end{aligned}
$$

The covariance in this case is
I won't show where this comes from.
$s_{m b}=\sum_{i=1}^{N}\left(\frac{\partial m}{\partial y_{i}}\right) \cdot\left(\frac{\partial b}{\partial y_{i}}\right) \cdot s_{i}^{2}$ However, you can find this treatment in L. Lyons, Statistics for Nuclear and

Particle Physicists, Cambridge
University Press, p127f.
From before, we showed that (sums go over $i=1, \ldots N$)

$$
m=\frac{\sum \frac{x_{i} \cdot y_{i}}{s_{i}^{2}}-b \cdot \sum \frac{x_{i}}{s_{i}^{2}}}{\sum \frac{x_{i}^{2}}{s_{i}^{2}}} \text { and } \quad b=\frac{\sum \frac{x_{i} \cdot y_{i}}{s_{i}^{2}}-m \cdot \sum \frac{x_{i}^{2}}{s_{i}^{2}}}{\sum \frac{x_{i}}{s_{i}^{2}}}
$$

Start with the equations for m and b from linear regression
$m=\frac{1}{\Delta} \cdot\left(\sum_{i} \frac{x_{i} \cdot y_{i}}{s_{i}^{2}} \cdot \sum_{i} \frac{1}{s_{i}^{2}}-\sum_{i} \frac{x_{i}}{s_{i}^{2}} \cdot \sum_{i} \frac{y_{i}}{s_{i}^{2}}\right)$
This is how slope and intercept depend on the primary data $\left(x_{i}, y_{i}\right.$, and
$b=\frac{1}{\Delta} \cdot\left(\sum_{i} \frac{x_{i}^{2}}{s_{i}^{2}} \cdot \sum_{i} \frac{y_{i}}{s_{i}^{2}}-\sum_{i} \frac{x_{i}}{s_{i}^{2}} \cdot \sum_{i} \frac{x_{i} \cdot y_{i}}{s_{i}^{2}}\right)$ s_{i}). The change of the results under a variation of the data
(derivatives), weighted by the amount of variability
(uncertainties of individual data points) determines the variability of the result.

$$
\frac{\partial m}{\partial y_{i}}=\frac{1}{\Delta} \cdot\left(\left[\sum_{j} \frac{1}{s_{j}^{2}}\right] \cdot \frac{x_{i}}{s_{i}^{2}}-\left[\sum_{j} \frac{x_{j}}{s_{j}^{2}}\right] \cdot \frac{1}{s_{i}^{2}}\right)
$$

Remember: Δ does not depend on the y_{i}-values, only on the x_{i} and s_{i}-values. This means it acts

$$
\frac{\partial b}{\partial y_{i}}=\frac{1}{\Delta} \cdot\left(\left[\sum_{j} \frac{x_{j}^{2}}{s_{j}^{2}}\right] \cdot \frac{1}{s_{i}^{2}}-\left[\sum_{j} \frac{x_{j}}{s_{j}^{2}}\right] \cdot \frac{x_{i}}{s_{i}^{2}}\right)
$$ as a parameter, you don't need to evaluate a complicated derivative of a ratio of functions.

Substitute this into the expression for covariance $s_{m b}$

$$
s_{m b}=\sum_{i} s_{i}^{2} \cdot\left(\frac{\partial m}{\partial y_{i}}\right) \cdot\left(\frac{\partial b}{\partial y_{i}}\right)=\frac{1}{\Delta^{2}} \cdot \sum_{i} s_{i}^{2}\left(\left[\sum_{j} \frac{1}{s_{j}^{2}}\right] \cdot \frac{x_{i}}{s_{i}^{2}}\left[\sum_{j} \frac{x_{j}}{s_{j}^{2}}\right] \cdot \frac{1}{s_{i}^{2}}\right) \cdot\left(\left[\sum_{j} \frac{x_{j}^{2}}{s_{j}^{2}}\right] \cdot \frac{1}{s_{i}^{2}}-\left[\sum_{j} \frac{x_{j}}{s_{j}^{2}}\right] \cdot \frac{x_{i}}{s_{i}^{2}}\right)
$$

$$
\begin{aligned}
& s_{m b}= \frac{1}{\Delta^{2}} \cdot \sum_{i} s_{i}^{2}\left(\left[\sum_{j} \frac{1}{s_{j}^{2}}\right] \cdot \frac{x_{i}}{s_{i}^{2}}-\left[\sum_{j} \frac{x_{j}}{s_{j}^{2}}\right] \cdot \frac{1}{s_{i}^{2}}\right) \cdot\left(\left[\sum_{j} \frac{x_{j}^{2}}{s_{j}^{2}}\right] \cdot \frac{1}{s_{i}^{2}}-\left[\sum_{j} \frac{x_{j}}{s_{j}^{2}}\right] \cdot \frac{x_{i}}{s_{i}^{2}}\right) \\
& s_{m b}=\frac{1}{\Delta^{2}} \cdot \sum_{i} s_{i}^{2}\left[\left(\sum_{j} \frac{1}{s_{j}^{2}}\right) \cdot\left(\sum_{j} \frac{x_{j}^{2}}{s_{j}^{2}}\right) \cdot \frac{x_{i}}{s_{i}^{4}}-\left(\sum_{j} \frac{x_{j}}{s_{j}^{2}}\right) \cdot\left(\sum_{j} \frac{x_{j}^{2}}{s_{j}^{2}}\right) \cdot \frac{1}{s_{i}^{4}}\right] \\
&+\frac{1}{\Delta^{2}} \cdot \sum_{i} s_{i}^{2}\left[-\left(\sum_{j} \frac{1}{s_{j}^{2}}\right) \cdot\left(\sum_{j} \frac{x_{j}}{s_{j}^{2}}\right) \cdot \frac{x_{i}^{2}}{s_{i}^{4}}+\left(\sum_{j} \frac{x_{j}}{s_{j}^{2}}\right) \cdot\left(\sum_{j} \frac{x_{j}}{s_{j}^{2}}\right) \cdot \frac{x_{i}}{s_{i}^{4}}\right]
\end{aligned}
$$

Now write this out as 4 separate sums.

$$
\begin{aligned}
& s_{m b}=\frac{1}{\Delta^{2}} \cdot\left[\left(\sum_{j} \frac{1}{s_{j}^{2}}\right)\left(\sum_{j} \frac{x_{j}^{2}}{s_{j}^{2}}\right) \sum_{i} \frac{x_{i}}{s_{i}^{2}}\left(\sum_{j} \frac{x_{i}}{s_{j}^{2}}\right)\left(\sum_{j} \frac{x_{j}^{2}}{s_{j}^{2}}\right) \sum_{i} \frac{1}{s_{i}^{2}}\right] \\
&+ \frac{1}{\Delta^{2}} \cdot \sum_{i} \frac{x_{i}}{s_{i}^{2}}\left[-\left(\sum_{j} \frac{1}{s_{j}^{2}}\right)\left(\sum_{j} \frac{x_{j}^{2}}{s_{j}^{2}}\right)+\left(\sum_{j} \frac{x_{j}}{s_{j}^{2}}\right)^{2}\right]
\end{aligned}
$$

Finally, $\quad s_{m b}=-\frac{1}{\Delta} \cdot \sum_{i} \frac{x_{i}}{s_{i}^{2}}$

$$
\begin{array}{ll}
s_{m b}=-\frac{1}{\Delta} \cdot \sum_{i} \frac{x_{i}}{s_{i}^{2}} \quad s_{m}^{2}=\frac{1}{\Delta} \cdot \sum_{i} \frac{1}{s_{i}^{2}} \quad s_{b}^{2}=\frac{1}{\Delta} \cdot \sum_{i} \frac{x_{i}^{2}}{s_{i}^{2}} \\
s_{\hat{y}}^{2}=x^{2} \cdot s_{m}^{2}+s_{b}^{2}+2 \cdot s_{m b} \cdot x \quad \begin{array}{l}
\text { All sums are performed over all } \\
\text { measured values, } i=1, \ldots, N .
\end{array} \\
s_{\hat{y}}^{2}=\frac{1}{\Delta} \cdot\left[\sum_{i} \frac{x_{i}^{2}}{s_{i}^{2}}+x^{2} \cdot \sum_{i} \frac{1}{s_{i}^{2}}-2 \cdot x \cdot \sum_{i} \frac{x_{i}}{s_{i}^{2}}\right] \\
\Delta=\sum_{i=1}^{N} \frac{1}{s_{i}^{2}} \cdot \sum_{i=1}^{N} \frac{x_{i}^{2}}{s_{i}^{2}}-\left(\sum_{i=1}^{N} \frac{x_{i}}{s_{i}^{2}}\right)^{2} \quad \begin{array}{l}
\text { Note that the error in } \hat{y} \text { depends } \\
\text { on } x . \text { The further you } \\
\text { extrapolate from measured } \\
\text { values, the larger the uncertainty } \\
\text { on the extrapolation becomes. }
\end{array}
\end{array}
$$

Check what happens in the special case that $x=0$:
$s_{\hat{y}}^{2}=\frac{1}{\Delta} \cdot\left[\sum_{i} \frac{x_{i}^{2}}{s_{i}^{2}}+x^{2} \cdot \sum_{i} \frac{1}{s_{i}^{2}}-2 \cdot x \cdot \sum_{i} \frac{x_{i}}{s_{i}^{2}}\right]=\frac{1}{\Delta} \cdot \sum_{i} \frac{x_{i}}{s_{i}^{2}}$
This is simply the uncertainty on the y-intercept: $s_{b}^{2}=\frac{1}{\Delta} \sum_{i} \frac{x_{i}^{2}}{s_{i}^{2}}$
For the unweighted case, $s_{i}=s$ for all $i=1, \ldots, N$
$s_{\widehat{y}}^{2}=\frac{s^{2}}{\Delta^{\prime}} \cdot\left[\sum_{i} x_{i}^{2}+N \cdot x^{2}-2 \cdot x \cdot \sum_{i} x_{i}\right]$

$$
\Delta^{\prime}=N \cdot \sum_{i=1}^{N} x_{i}^{2}-\left(\sum_{i=1}^{N} x_{i}\right)^{2}
$$

Example:

You have measured 7 linearly correlated $x-y$-data pairs $\left(x_{i}, y_{i}\right)$ and have knowledge of their individual standard deviation $s_{y_{i}}$. What straight line fit $f(x)=m \cdot x+b$ do you obtain and what do you know about the uncertainties of the fit and its parameters m and b ?

[arbitrary units]	$\begin{array}{\|l} \hline \text { y } \\ \text { [arbitrary units] } \\ \hline \end{array}$	s_{y} [arbitrary units]
1.0	4.07	0.20
2.0	4.76	0.30
3.0	7.00	0.50
4.0	6.97	1.50
5.0	8.3	1.10
6.0	7.01	2.50
7.0	9.90	2.10

EXCEL's answer
(ignoring individual point-wise uncertainties):

$$
\begin{aligned}
& m=0.83 \pm 0.17 \\
& b=3.53 \pm 0.77 \\
& \chi^{2} / N D F=8.65 / 5
\end{aligned}
$$

Now perform linear regression we learned last class, taking into account the individual uncertainties.
$m=1.06 \pm 0.16$
$b=2.97 \pm 0.30$
$\chi^{2} / N D F$
$=5.04 / 5$

EXCEL's answer (ignoring individual point-wise uncertainties):
$m=0.83 \pm 0.17$
$b=3.53 \pm 0.77$
$\chi^{2} / N D F=8.65 / 5$

The analyzed data was created with a random number generator (using the normal distribution). The "truth information" was:
$m=1.0$
$b=3.0$

How well do we estimate interpolated and extrapolated y-values?

In this example I just ignored the covariant error term. This model is simple but wrong.

In this calculation I utilized the covariant error term. This model is more complicated but correct.
The error boundaries are a little tighter as before, the point with minimal error corresponds to a different x value.
The uncertainty is smallest where you have data (interpolation). It is smaller than the individual error bars. The uncertainty quickly grows where you have no supporting data (extrapolation).

I hope some of the material I presented sticks. These basic concepts of data treatment and estimation of certainty are essential tools for anybody in the sciences, engineering etc. who has to deal with data. In practical situations: if you can't know how sure to be about something, you need to base decisions on "feelings", "convictions", "common sense" instead of rational thought and quantifiable arguments.

There are certain situations where you have no choice because you simply don't know the quantifiable details. If one has a choice ratio (Latin for reason) is usually a good guide to decision making.

Appendix 2: derivation of the linear regression relations

Backup: derivation of linear regression formulas for slope and y-intercept

$$
\chi^{2}=\sum_{i} \frac{\left(y_{i}-y_{f i}\right)^{2}}{s_{i}^{2}}=\sum_{i} \frac{\left(y_{i}-m \cdot x_{i}-b\right)^{2}}{s_{i}^{2}}
$$

$$
\frac{\partial \chi^{2}}{\partial m}=-2 \sum_{i} \frac{\left(y_{i}-m \cdot x_{i}-b\right) x_{i}}{s_{i}^{2}}=0
$$

Note: in this appendix the straight line is parametrized as $f(x)=m \cdot x+b$. Therefore, $m \equiv p_{2}$ and $b=p_{1}$.

$$
\frac{\partial \chi^{2}}{\partial b}=-2 \sum_{i} \frac{\left(y_{i}-m \cdot x_{i}-b\right)}{s_{i}^{2}}=0
$$

$$
\begin{align*}
& -\sum_{i} \frac{y_{i} x_{i}}{s_{i}^{2}}+m \sum_{i} \frac{x_{i}^{2}}{s_{i}^{2}}+b \sum_{i} \frac{x_{i}}{s_{i}^{2}}=0 \Longrightarrow m \sum_{i} \frac{x_{i}^{2}}{s_{i}^{2}}+b \sum_{i} \frac{x_{i}}{s_{i}^{2}}=\sum_{i} \frac{y_{i} x_{i}}{s_{i}^{2}} \tag{I}\\
& -\sum_{i} \frac{y_{i}}{s_{i}^{2}}+m \sum_{i} \frac{x_{i}}{s_{i}^{2}}+b \sum_{i} \frac{1}{s_{i}^{2}}=0 \Longrightarrow-m \sum_{i} \frac{x_{i}}{s_{i}^{2}}-b \sum_{i} \frac{1}{s_{i}^{2}}=-\sum_{i} \frac{y_{i}}{s_{i}^{2}} \tag{II}
\end{align*}
$$

Multiply (I) by $\sum_{i} \frac{x_{i}}{s^{2}}$ and (II) by $\sum_{i} \frac{x_{i}^{2}}{s^{2}}$

$$
\begin{align*}
& m \sum_{i} \frac{x_{i}^{2}}{s_{i}^{2}} \sum_{i} \frac{x_{i}}{s_{i}^{2}}+b \sum_{i} \frac{x_{i}}{s_{i}^{2}} \sum_{i} \frac{x_{i}}{s_{i}^{2}}=\sum_{i} \frac{y_{i} x_{i}}{s_{i}^{2}} \sum_{i} \frac{x_{i}}{s_{i}^{2}} \tag{I}\\
& -m \sum_{i} \frac{x_{i}}{s_{i}^{2}} \sum_{i} \frac{x_{i}^{2}}{s_{i}^{2}}-b \sum_{i} \frac{1}{s_{i}^{2}} \sum_{i} \frac{x_{i}^{2}}{s_{i}^{2}}=-\sum_{i} \frac{y_{i}}{s_{i}^{2}} \sum_{i} \frac{x_{i}^{2}}{s_{i}^{2}} \tag{II}
\end{align*}
$$

Now add (I) and (II) and define $\Delta=\left[\sum_{i} \frac{1}{s_{i}^{2}} \sum_{i} \frac{x_{i}^{2}}{s_{i}^{2}}-\left(\sum_{i} \frac{x_{i}}{s_{i}^{2}}\right)^{2}\right]$

$$
b=\frac{1}{\Delta}\left(\sum_{i} \frac{y_{i}}{s_{i}^{2}} \sum_{i} \frac{x_{i}^{2}}{s_{i}^{2}}-\sum_{i} \frac{y_{i} x_{i}}{s_{i}^{2}} \sum_{i} \frac{x_{i}}{s_{i}^{2}}\right) \quad y \text {-intercept }
$$

Now modify the calculation from the previous slide to get the slope.

$$
\begin{align*}
& -\sum_{i} \frac{y_{i} x_{i}}{s_{i}^{2}}+m \sum_{i} \frac{x_{i}^{2}}{s_{i}^{2}}+b \sum_{i} \frac{x_{i}}{s_{i}^{2}}=0 \Longrightarrow m \sum_{i} \frac{x_{i}^{2}}{s_{i}^{2}}+b \sum_{i} \frac{x_{i}}{s_{i}^{2}}=\sum_{i} \frac{y_{i} x_{i}}{s_{i}^{2}} \tag{I}\\
& -\sum_{i} \frac{y_{i}}{s_{i}^{2}}+m \sum_{i} \frac{x_{i}}{s_{i}^{2}}+b \sum_{i} \frac{1}{s_{i}^{2}}=0 \Longrightarrow-m \sum_{i} \frac{x_{i}}{s_{i}^{2}}-b \sum_{i} \frac{1}{s_{i}^{2}}=-\sum_{i} \frac{y_{i}}{s_{i}^{2}} \tag{II}
\end{align*}
$$

Multiply (I) by $\sum_{i} \frac{1}{\sigma^{2}}$ and (II) by $\sum_{i} \frac{x_{i}}{\sigma^{2}}$

$$
\begin{align*}
& m \sum_{i} \frac{x_{i}^{2}}{s_{i}^{2}} \sum_{i} \frac{1}{s_{i}^{2}}+b \sum_{i} \frac{x_{i}}{s_{i}^{2}} \sum_{i} \frac{1}{s_{i}^{2}}=\sum_{i} \frac{y_{i} x_{i}}{s_{i}^{2}} \sum_{i} \frac{1}{s_{i}^{2}} \tag{I}\\
& -m \sum_{i} \frac{x_{i}}{s_{i}^{2}} \sum_{i} \frac{x_{i}}{s_{i}^{2}}-b \sum_{i} \frac{1}{s_{i}^{2}} \sum_{i} \frac{x_{i}}{s_{i}^{2}}=-\sum_{i} \frac{y_{i}}{s_{i}^{2}} \sum_{i} \frac{x_{i}}{s_{i}^{2}} \tag{II}
\end{align*}
$$

Now add (I) and (II) and define $\Delta=\left[\sum_{i} \frac{1}{s_{i}^{2}} \sum_{i} \frac{x_{i}^{2}}{s_{i}^{2}}-\left(\sum_{i} \frac{x_{i}}{s_{i}^{2}}\right)^{2}\right]$

$$
m=\frac{1}{\Delta}\left(\sum_{i} \frac{y_{i} x_{i}}{s_{i}^{2}} \sum_{i} \frac{1}{s_{i}^{2}}-\sum_{i} \frac{y_{i}}{s_{i}^{2}} \sum_{i} \frac{x_{i}}{s_{i}^{2}}\right) \quad \text { slope }
$$

Backup: derivation of error on y intercept from linear regression fit

$$
\begin{aligned}
b & =\frac{1}{\Delta}\left(\sum_{i} \frac{y_{i}}{\sigma_{i}^{2}} \sum_{i} \frac{x_{i}^{2}}{\sigma_{i}^{2}}-\sum_{i} \frac{y_{i} x_{i}}{\sigma_{i}^{2}} \sum_{i} \frac{x_{i}}{\sigma_{i}^{2}}\right) \\
\sigma_{b}^{2} & =\sum_{j}\left(\frac{\partial b}{\partial y_{j}}\right) \sigma_{j}^{2} \\
\frac{\partial b}{\partial y_{j}} & =\frac{1}{\Delta}\left(\frac{1}{\sigma_{j}^{2}} \sum_{i} \frac{x_{i}^{2}}{\sigma_{i}^{2}}-\frac{x_{j}}{\sigma_{j}^{2}} \sum_{i} \frac{x_{i}}{\sigma_{i}^{2}}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \sigma_{b}^{2}=\sum_{j} \frac{1}{\Delta^{2}}\left(\frac{1}{\sigma_{j}^{2}} \sum_{i} \frac{x_{i}^{2}}{\sigma_{i}^{2}}-\frac{x_{j}}{\sigma_{j}^{2}} \sum_{i} \frac{x_{i}}{\sigma_{i}^{2}}\right)^{2} \sigma_{j}^{2} \\
& \sigma_{b}^{2}=\sum_{j} \frac{\sigma_{j}^{2}}{\Delta^{2}}\left[\frac{1}{\sigma_{j}^{4}}\left(\sum_{i} \frac{x_{i}^{2}}{\sigma_{i}^{2}}\right)^{2}-2 \frac{x_{j}}{\sigma_{j}^{4}}\left(\sum_{i} \frac{x_{i}^{2}}{\sigma_{i}^{2}}\right)\left(\sum_{i} \frac{x_{i}}{\sigma_{i}^{2}}\right)+\frac{x_{j}^{2}}{\sigma_{j}^{4}}\left(\sum_{i} \frac{x_{i}}{\sigma_{i}}\right)^{2}\right] \\
& \sigma_{b}^{2}=\frac{1}{\Delta^{2}} \sum_{j} \frac{1}{\sigma_{j}^{2}}\left(\sum_{i} \frac{x_{i}^{2}}{\sigma_{i}^{2}}\right)^{2}-2 \sum_{j} \frac{x_{j}}{\sigma_{j}^{2}}\left(\sum_{i} \frac{x_{i}^{2}}{\sigma_{i}^{2}}\right)\left(\sum_{i} \frac{x_{i}}{\sigma_{i}^{2}}\right)+\sum_{j} \frac{x_{j}^{2}}{\sigma_{j}^{2}}\left(\sum_{i} \frac{x_{i}}{\sigma_{i}^{2}}\right)^{2}
\end{aligned}
$$

$$
\sigma_{b}^{2}=\frac{1}{\Delta} \sum_{j} \frac{x_{j}^{2}}{\sigma_{j}^{2}} \quad \text { Error on y-intercept }
$$

After a similar calculation

$$
\sigma_{m}^{2}=\frac{1}{\Delta} \sum_{j} \frac{1}{\sigma_{j}^{2}} \quad \text { Error on slope }
$$

