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Summary statistics
We have studied how to summarize a data set 𝑦! of 𝑖 = 1,… ,𝑁
independent measurements with a mean and standard deviation:

Mean:

𝑦 =
1
𝑁 ()

!"#

$

𝑦!

Standard deviation:

𝑠% =
1

𝑁 − 1 ()
!"#

$

𝑦! − 𝑦 %

What do we do if the data exhibits a linear correlation? Assume the 
variation in 𝑖 goes along with changing some observable 𝑥 not 
plotted here. 



Linear relationships

This data better described by line
𝑦 = 𝑓 𝑥 = 𝑝% ( 𝑥 + 𝑝#

How do we find the optimal 𝑝# and 𝑝%?

• Assume fluctuations are random (Gaussian), errors symmetric.
• Assume the data represents the most likely outcome of the 

measurement.
• Then: principle of maximum likelihood allows parameter 

estimation.



Model functions

• 𝑁 data pairs 𝑥!, 𝑦! . 
• Want 𝑓 𝑥! that describes 𝑦! so 𝑓 𝑥! ≈ 𝑦!.
• The function f is our fit model. What is reasonable form for f ?
• Justified by how well 𝑓 fits the data and physical plausibility
• Often starts by eyeballing it!
• f needs M tunable parameters 𝑝#, … , 𝑝&, therefore: 
– 𝑦! ≈ 𝑓 𝑥!; 𝑝#, … , 𝑝& . 

• Once a functional form has been chosen, game is to determine the 
numerical values of 𝑝! (and their errors) that best fit the data.

• Assume the statistical fluctuations of the data are Gaussian



Likelihood

• Probability 𝑃 for observing 𝑦! for an independent 
variable 𝑥! is given by:

𝑃 𝑥!; 𝑝#, … , 𝑝& 𝑑𝑥 =
1
2 ( 𝜋

(
1
𝑠!
( 𝑒𝑥𝑝 −

𝑦! − 𝑓 𝑥!, 𝑝#, … , 𝑝& %

2 ( 𝑠!%
𝑑𝑥

Our description of the “mean”

• Assume each 𝑦! subject to fluctuations of known 
standard dev 𝑠! (but 𝑥! free of fluctuations)

• 𝑓 plays the role of the underlying true value of 𝑦
• Want 𝑝", … , 𝑝# that maximize the likelihood of 

observing the union of all 𝑁 pairs 𝑥! , 𝑦! .



Likelihood
• Maximize product of individual data-pair wise probs:

𝑃' =7
!"#

$

𝑃 𝑥!; 𝑦!, 𝑝#, … , 𝑝&

𝑙𝑛 𝑃' =)
!"#

$

𝑙𝑛 𝑃 𝑥!; 𝑦!, 𝑝#, … , 𝑝&

=)
!"#

$

𝑙𝑛
1
2 ( 𝜋

(
1
𝑠!
( 𝑒𝑥𝑝 −

𝑦! − 𝑓 𝑥!, 𝑝#, … , 𝑝& %

2 ( 𝑠!%

Easier to find the max of ln 𝑃$ … ln(x) is monotonic 



Likelihood

• Set of 𝑝! that maximizes the likelihood are the 
best fit parameters.

𝑙𝑛 𝑃' =)
("#

$

𝑙𝑛
1
2 ( 𝜋

(
1
𝑠!
( 𝑒𝑥𝑝 −

𝑦! − 𝑓 𝑥!, 𝑝#, … , 𝑝& %

2 ( 𝑠!%

𝑙𝑛 𝑃' =)
!"#

$

𝑙𝑛
1
2 ( 𝜋

(
1
𝑠!

−
1
2 ()

!"#

$
𝑦! − 𝑓 𝑥!, 𝑝#, … , 𝑝& %

𝑠!%

𝜕𝑃' 𝑥!; 𝑦!, 𝑝#, … , 𝑝&
𝜕𝑝(

= 0



Likelihood

• This is the chi-square statistic. 
• Measures the deviation of our data from the fit function 𝑓. 
• Choose 𝑝( to minimize 𝜒% and thus maximize likelihood

𝜕
𝜕𝑝(

)
!"#

$

𝑙𝑛
1
2 ( 𝜋

(
1
𝑠!

−
1
2 ()

!"#

$
𝑦! − 𝑓 𝑥!; 𝑝#, … , 𝑝& %

𝑠!%
= 0

for 𝑗 = 1,… ,𝑀
does not depend on 𝑝!, 
all derivatives are 0

minus sign: likelihood is maximal when this 
expression is minimal

𝜒% =)
!"#

$
𝑦! − 𝑓 𝑥!; 𝑝#, … , 𝑝& %

𝑠!%



Chi square

𝜕
𝜕𝑝(

𝜒% =
𝜕
𝜕𝑝(

)
!"#

$
𝑦! − 𝑓 𝑥!; 𝑝#, … , 𝑝& %

𝑠!%
= 0 𝑓𝑜𝑟 𝑗 = 1,… ,𝑀

This method of finding the best-fit 𝑓 is called chi-square 
minimization. It works for just about any function.

Obtain the unknown parameters 𝑝! by simultaneously solving the 𝑀
equations:

𝜒% 𝑁, 𝑥!; 𝑦!, 𝑠!, 𝑝#, … , 𝑝& =
1

𝑁 −𝑀 ()
!"#

$
𝑦! − 𝑓 𝑥!, ; 𝑝#, … , 𝑝& %

𝑠!%

Usually leads to a system of 𝑀 non-linear equations that can’t be 
solved analytically … numerical methods required



Numerical methods

• The linear case is analytically solvable
– 𝑦! = 𝑓 𝑥! = 𝑝% 5 𝑥! + 𝑝"

• Every decent analysis program does this
• Excel does the absolute bare minimum
• Some will do much more – matlab, 

mathematica, originlab, python … many 
options, learn one of these.



Linear case

Find the values of 𝑝# and 𝑝% which minimize 𝜒%

𝜕𝜒%

𝜕𝑝%
= 0

𝜕𝜒%

𝜕𝑝#
= 0

𝜒! =
1

𝑁 − 𝑀
'(
"#$

%
𝑦" − 𝑝! ' 𝑥" − 𝑝$ !

𝑠"!
Describe data with linear function:
(each measurement has own 𝑠!)

and
2 eqns 2 unknowns
Need at least two data pairs 
to solve this problem; more 
improve precision.

𝜕𝜒%

𝜕𝑝%
= −2 ()

!"#

$
𝑦! − 𝑝% ( 𝑥! −𝑝# ( 𝑥!

𝑠!%
= 0

𝜕𝜒%

𝜕𝑝#
= −2 ()

!"#

$
𝑦! − 𝑝% ( 𝑥! − 𝑝#

𝑠!%
= 0

Simultaneously solve 
two inhomogeneous 
linear equations.



Linear case

𝑝$ =
1
Δ
' (

"#$

%
𝑥"!

𝑠"!
'(
"#$

%
𝑦"
𝑠"!
−(

"#$

%
𝑥"
𝑠"!
'(
"#$

%
𝑥" ' 𝑦"
𝑠"!

Algebra ensues … 

𝑝! =
1
Δ
' (

"#$

%
1
𝑠"!
'(
"#$

%
𝑥" ' 𝑦"
𝑠"!

−(
"#$

%
𝑥"
𝑠"!
'(
"#$

%
𝑦"
𝑠"!

where

Δ = (
"

1
𝑠"
! '(

"

𝑥"!

𝑠"
! − (

"

𝑥"
𝑠"
!

!

−(
"#$

%
𝑦"
𝑠"!
+ 𝑝! '(

"#$

%
𝑥"
𝑠"!
+ 𝑝$ '(

"#$

%
1
𝑠"!
= 0

−(
"#$

%
𝑦" ' 𝑥"
𝑠"!

+ 𝑝! '(
"#$

%
𝑥"!

𝑠"!
+ 𝑝$ '(

"#$

%
𝑥"
𝑠"!
= 0 Solve for 𝑝# and 𝑝%. 

Tedious; details in appendix



Linear result
Slope 𝑝% of the fit line:

𝑝% =
1
Δ ( )

!"#

$
1
𝑠!%
()
!"#

$
𝑥! ( 𝑦!
𝑠!%

−)
!"#

$
𝑥!
𝑠!%
()
!"#

$
𝑦!
𝑠!%

Intercept 𝑝# of the fit line:

𝑝# =
1
Δ ( )

!"#

$
𝑥!%

𝑠!%
()
!"#

$
𝑦!
𝑠!%
−)

!"#

$
𝑥!
𝑠!%
()
!"#

$
𝑥! ( 𝑦!
𝑠!%

Δ =)
!"#

$
1
𝑠!%
()
!"#

$
𝑥!%

𝑠!%
− )

!"#

$
𝑥!
𝑠!%

%

i: number of measurements, 
i=1, 2,…, N

xi: independent variable
yi: dependent variable
si: standard deviation of yi
sp2: standard deviation of p2
sp1: standard deviation of p1



Linear result (equal si)
If all uncertainties are equal 𝑠 = 𝑠! , simple enough Excel can do it:

Slope 𝑝% of the fit line:

𝑝% =
1
Δ′ ( 𝑁 ()

!"#

$

𝑥! ( 𝑦! −)
!"#

$

𝑥! ()
!"#

$

𝑦!

Intercept 𝑝# of the fit line:

𝑝# =
1
Δ′ ( )

!"#

$

𝑥!% ()
!"#

$

𝑦! −)
!"#

$

𝑥! ()
!"#

$

𝑥! ( 𝑦!

Δ′ = 𝑁 ()
!"#

$

𝑥!% − )
!"#

$

𝑥!

%



Linear result - uncertainty

• If all uncertainties can be assumed to be equal 
𝑠 = 𝑠" , you can determine this common 

uncertainty from the data. 
• e.g. uncertainties are instrumental and you’ve 

used the same instrument for all

𝑠% =
1

𝑁 − 2 ()
!"#

$

𝑦! − 𝑝% ( 𝑥! − 𝑝# %



Linear result - uncertainty

Solve for slope 𝑝%…

𝜕𝜒%

𝜕𝑝%
= 𝑝# ()

!

𝑥!
𝑠!%
+ 𝑝% ()

!

𝑥!%

𝑠!%
−)

!

𝑥! ( 𝑦!
𝑠!%

= 0

What about the error on the fitted slope 𝑝% and intercept 𝑝#?
(general case of unequal si again)

𝑝% =
∑𝑥! ( 𝑦!

𝑠!%
− 𝑝# ( ∑

𝑥!
𝑠!%

∑𝑥!
%

𝑠!%

The slope 𝑝% and intercept 𝑝# are 
dependent on each other (correlated).

Must be taken into account when 
calculating the error of interpolated or 
extrapolated values 𝑦 = 𝑝% ( 𝑥 + 𝑝#



Linear result - uncertainty

𝑠*!
% =)

!"#

$
𝜕𝑝%
𝜕𝑦!

%

( 𝑠!%

We use error propagation to find the errors on 𝑝# and 𝑝%, assuming 
the errors 𝑠( of the individual measurements 𝑦( are uncorrelated.

𝑠*"
% =)

!"#

$
𝜕𝑝#
𝜕𝑦!

%

( 𝑠!%

After some manipulation:

𝑠*!
% =

1
Δ ()

!"#

$
1
𝑠!%

𝑠*"
% =

1
Δ ()

!"#

$
𝑥!%

𝑠!%

Where, as before: Δ =)
!"#

$
1
𝑠!%
()
!"#

$
𝑥!%

𝑠!%
− )

!"#

$
𝑥!
𝑠!%

%



Linear result - uncertainty
For the special case of equal uncertainties 𝑠 = 𝑠! for all 𝑦!-
values the uncertainties 𝑠*" and 𝑠*! of the fitted intercept 𝑝# and 
slope 𝑝% are:

𝑠*!
% = 𝑁 (

𝑠%

Δ′
𝑠*"
% =

𝑠%

Δ′ ()
!"#

$

𝑥!%

Δ′ = 𝑁 ()
!"#

$

𝑥!% − )
!"#

$

𝑥!

%

𝑠% =
1

𝑁 − 2 ()
!"#

$

𝑦! − 𝑝% ( 𝑥! − 𝑝# %



Linear result - uncertainty
• In Excel - use the function LINEST. Syntax:

=LINEST(y-array,x-array,TRUE,TRUE)

• You’ll need to look up the details.

• This routine is what EXCEL calls an “array formula”, it needs 
to be declared as such. 

• Array formulas typically require some output to be spread over 
multiple cells, you need to define which cells.

• Again, look up how to do this.



Summary
N correlated pairs xi and yi

𝑓 𝑥 = 𝑝! * 𝑥 + 𝑝"

N correlated pairs xi and yi with individual y-errors si

Δ′ = 𝑁 */
#$"

%

𝑥#! − /
#$"

%

𝑥#

!

Δ =/
#$"

%
1
𝑠#!
*/
#$"

%
𝑥#!

𝑠#!
− /

#$"

%
𝑥#
𝑠#!

!

Intercept: 𝑝" =
1
Δ
* /

#$"

%
𝑥#!

𝑠#!
*/
#$"

%
𝑦#
𝑠#!
−/

#$"

%
𝑥#
𝑠#!
*/
#$"

%
𝑥# * 𝑦#
𝑠#!

Error in intercept:

𝑝! =
1
Δ
* /

#$"

%
1
𝑠#!
*/
#$"

%
𝑥# * 𝑦#
𝑠#!

−/
#$"

%
𝑥#
𝑠#!
*/
#$"

%
𝑦#
𝑠#!

𝑠&! =
1
Δ
*/
#$"

%
1
𝑠#!

Slope:

Error in slope:

𝑠&" =
1
Δ
*/
#$"

%
𝑥#!

𝑠#!

Intercept:

Error in intercept:

Slope:

Error in slope:

𝑝" =
1
Δ′
* /

#$"

%

𝑥#! */
#$"

%

𝑦# −/
#$"

%

𝑥# */
#$"

%

𝑥# * 𝑦#

𝑠&" =
∑#$"% 𝑥#!

Δ′
* 𝑠

𝑝! =
1
Δ′ * 𝑁 */

#$"

%

𝑥# * 𝑦# −/
#$"

%

𝑥# */
#$"

%

𝑦#

𝑠&! =
𝑁
Δ′
* 𝑠

𝑠! =
1

𝑁 − 2
*/
#$"

%

𝑦# − 𝑝! * 𝑥# − 𝑝" !



Going further - linearization

• Both the slope and intercept are determined by 
simple sums; no complicated iterative process 
is needed to get the fit results

• In many cases, experimental problems can be 
linearized by redefining experimental 
variables

• Then, linear regression offers a simple means 
to find a description of the data.



Example: Rydberg constant

• Atomic spectra - wavelengths of transitions in 
the hydrogen atom (Balmer series). 

• Measure the Rydberg constant, RH, in Balmer 
formula

• Rydberg formula: #
$
= 𝑅% 1

#
&!"
− #

&""

• Balmer series: 𝑛# = 2 and 𝑛' = 3,… ,∞.
• Given 𝑛, 𝜆 data, how to extract RH?



Example: Rydberg constant

n2 λ
(nm)

sλ
(nm)

4 484 4.0
5 433 3.0
6 408 2.5
7 395 3.0
8 387 1.0

Data from a hydrogen lamp via the Ocean Optics spectrometer.
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Main quantum number initial state

Balmer series of hydrogen

First attempt: plot the raw data, wavelength 
versus main quantum number of final state.

Doesn’t help, the problem is obviously non-linear.



Example: Rydberg constant
Now linearize the problem with: #

+
= −𝑅, (

#
-!!

+ .#
-"!

. 
n2 1/n2

2 λ
(nm)

sλ
(nm)

1/λ 
(nm-1)

s1/λ
(nm-1)

4 0.063 484 4.0 2.066E-03 1.71E-05
5 0.040 433 3.0 2.309E-03 1.60E-05
6 0.028 408 2.5 2.451E-03 1.50E-05
7 0.020 395 3.0 2.532E-03 1.92E-05
8 0.016 387 1.0 2.584E-03 6.68E-06

Translate errors of y-values, 
from λ to 1/λ. Error 
propagation ftw:

𝑑 1
𝜆

𝑑𝜆 = −
1
𝜆%

𝑠#/+ =
𝑠+
𝜆%

y = -0.0111x + 0.0028

2.0E-03

2.1E-03
2.2E-03

2.3E-03
2.4E-03

2.5E-03
2.6E-03

0.01 0.02 0.03 0.04 0.05 0.06 0.07

1/
λ 

(n
m

-1
)

1/n2
2

Balmer series of hydrogen

Now apply linear regression to find 
the slope & Rydberg constant.



Details.
n2 x ≡ 1/n2

2 λ (nm)sλ
(nm)

y ≡ 1/λ 
(nm-1) s1/λ (nm-1) xi2/si2 yi/si2 xi/si2 xi·yi/si2 1/si2

4 0.0625 484 4 2.066E-03 1.71E-05 1.34E+07 7.086E+06 2.14E+08 4.429E+05 3.43E+09
5 0.0400 433 3 2.309E-03 1.60E-05 6.25E+06 9.020E+06 1.56E+08 3.608E+05 3.91E+09
6 0.0278 408 2.5 2.451E-03 1.50E-05 3.42E+06 1.087E+07 1.23E+08 3.019E+05 4.43E+09
7 0.0204 395 3 2.532E-03 1.92E-05 1.13E+06 6.848E+06 5.52E+07 1.398E+05 2.70E+09
8 0.0156 387 1 2.584E-03 6.68E-06 5.48E+06 5.796E+07 3.50E+08 9.056E+05 2.24E+10

Sum 2.97E+07 9.18E+07 8.99E+08 2.15E+06 3.69E+10

Perform all multiplications and products of the sums to get 𝑝$, 𝑝% → 𝑛$, 𝑅&… 

𝑝% = −𝑅& = 1.109 ± 0.036 4 10'( 𝑚 (y-axis is in nm, I converted to m).

𝑛$ from intercept: 𝑛$ =
)!
*"
= 2.005 but what’s the error of 𝑛$?

Tabulated value: 𝑅& = 1.097 4 10'( 𝑚

In practice: don’t have to do manually with sums, could use LINEST in Excel



Linear fit with uncertainties
• Red: neglect
• Blue: include
• Huge for intercept
• Non-negligible for slope
(curves with or without x error same on 
this scale)

Mode Slope (err) Intercept (err)

Ignore both 5.02 ± 0.17 0.32 ± 3.21

Include y error 5.67 ± 0.08 -15.1 ± 1.5

Include y and x errors 5.48 ± 0.12 -12.5 ± 1.8



Power laws

• “I know, let’s plot it on a log scale and the power is 
the slope”

• “I know, we can use different power laws in 
different regimes”

• Uncertainty and noise floor … propagate/subtract
• Nothing is really a power law except in a narrow 

range
• Don’t piece together models without (logical) glue



A better way

• If the model is
• Then
• It is true the slope of a ln y – ln x plot has 

slope n, but it is easy to fool yourself
• Better: logarithmic derivative

• Much easier to judge if plot is just a constant 



Exercise

• From here you learn by doing
• I’ll give you data – resistivity vs temperature. 
• You come up with a model and fit
• If possible – reason for model? Physics?
• Not including uncertainty for now
• Report fit parameters with uncertainty and 

(chi-square)/DOF (and a plot obviously) 



Data and plausible models
• Will give csv file of data
• Plausible models? Many!
• Material – VO2



Appendices

• Further details on uncertainties of 
extrapolated and interpolated data

• Some derivations 



Uncertainties on Extrapolated and 
Interpolated Values

After performing linear regression on 𝑥 − 𝑦-data pairs, the fit line’s 
utility is often to use it to determine the 𝑦 -values for 𝑥-values you 

haven’t directly observed during your “calibration”. If these 𝑥-
values are bracket by 𝑥+,- and 𝑥+./ such as 𝑥+,- ≤ 𝑥 ≤ 𝑥+./ you call 
this interpolation. If 𝑥-lies outside the “calibrated” range you call this 
process extrapolation. The question is: how do we determine the 
uncertainty on interpolated and extrapolated 𝑦-values?



We now know how to fit this data 
with the equation 𝑦 = 𝑓 𝑥 = 𝑚 &
𝑥 + 𝑏. We get the values of m and b
and their uncertainties 𝑠0 and 𝑠1
through linear regression. 

Suppose we want to calculate the value of ŷ at some value of x,
where we did not make a measurement, using the linear regression 
equation. What is the uncertainty on sŷ on ŷ? 

My apology: there is a terminology change here. Before: 𝑓 𝑥 = 𝑝% &
𝑥 + 𝑝#. For the rest of this section I use: 𝑓 𝑥 = 𝑚 & 𝑥 + 𝑏. I didn’t 
feel like changing 50+ equations…
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𝑠 23
% =

𝜕𝑓 𝑥
𝜕𝑚

%

& 𝑠0% +
𝜕𝑓 𝑥
𝜕𝑏

%

& 𝑠1% +2 & 𝑠01 &
𝜕𝑓 𝑥
𝜕𝑚 &

𝜕𝑓 𝑥
𝜕𝑏

Another reminder: 𝑚 and 𝑏 are correlated because

𝑚 =
∑!
𝑥! & 𝑦!
𝑠!%

− 𝑏 & ∑!
𝑥!
𝑠!%

∑!
𝑥!%

𝑠!%

Therefore to calculate the error on 𝑓 𝑥 we need to propagate 
the errors on 𝑚 and 𝑏, including the covariant term.

Note: the sums all go over 𝑖 = 1,… ,𝑁. 
From here on the summation index will 
be dropped from the equations to 
reduce the number of symbols.
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Since 𝑓 𝑥 = 𝑚 & 𝑥 + 𝑏 : 

𝜕𝑓 𝑥
𝜕𝑚 = 𝑥

𝜕𝑓 𝑥
𝜕𝑏 = 1and 

𝑠 23% = 𝑥% & 𝑠0% + 𝑠1% + 2 & 𝑠01& 𝑥

𝑠 23
% =

𝜕𝑓 𝑥
𝜕𝑚

%

& 𝑠0% +
𝜕𝑓 𝑥
𝜕𝑏

%

& 𝑠1% +2 & 𝑠01 &
𝜕𝑓 𝑥
𝜕𝑚 &

𝜕𝑓 𝑥
𝜕𝑏
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The covariance in this case is 

𝑠01 =4
!"#

$
𝜕𝑚
𝜕𝑦!

&
𝜕𝑏
𝜕𝑦!

& 𝑠!%

From before, we showed that (sums go over 𝑖 = 1,…𝑁)

𝑚 =
∑𝑥! & 𝑦!

𝑠!%
− 𝑏 & ∑ 𝑥!𝑠!%

∑𝑥!
%

𝑠!%
𝑏 =

∑𝑥! & 𝑦!
𝑠!%

−𝑚 & ∑𝑥!
%

𝑠!%

∑ 𝑥!
𝑠!%

and 

I won’t show where this comes from. 
However, you can find this treatment in 
L. Lyons, Statistics for Nuclear and 
Particle Physicists, Cambridge 
University Press, p127f.
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𝑚 =
1
Δ & 4

!

𝑥! & 𝑦!
𝑠!%

&4
!

1
𝑠!%
−4

!

𝑥!
𝑠!%
&4

!

𝑦!
𝑠!%

𝑏 =
1
Δ & 4

!

𝑥!%

𝑠!%
&4

!

𝑦!
𝑠!%
−4

!

𝑥!
𝑠!%
&4

!

𝑥! & 𝑦!
𝑠!%

Now take the partial derivatives of 𝑚
and 𝑏 with respect to 𝑦! or jump to 
result.

Start with the equations for 𝑚 and 𝑏 from linear regression

This is how slope and 
intercept depend on the 
primary data (xi, yi, and 
si). The change of the 
results under a variation 
of the data 
(derivatives), weighted 
by the amount of 
variability 
(uncertainties of 
individual data points) 
determines the 
variability of the result.
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𝜕𝑚
𝜕𝑦,

=
1
∆
4 >

0

1
𝑠0%

4
𝑥,
𝑠,%
− >

0

𝑥0
𝑠0%

4
1
𝑠,%

𝜕𝑏
𝜕𝑦,

=
1
∆
4 >

0

𝑥0%

𝑠0%
4
1
𝑠,%
− >

0

𝑥0
𝑠0%

4
𝑥,
𝑠,%

Substitute this into the expression for covariance smb

𝑠!" =3
#

𝑠#$ 4
𝜕𝑚
𝜕𝑦#

4
𝜕𝑏
𝜕𝑦#

=
1
∆$
43

#

𝑠#$ 3
%

1
𝑠%$

4
𝑥#
𝑠#$
− 3

%

𝑥%
𝑠%$

4
1
𝑠#$

4 3
%

𝑥%$

𝑠%$
4
1
𝑠#$
− 3

%

𝑥%
𝑠%$

4
𝑥#
𝑠#$

Remember: Δ does not depend 
on the yi-values, only on the xi
and si-values. This means it acts 
as a parameter, you don’t need 
to evaluate a complicated 
derivative of a ratio of 
functions.
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𝑠"# =
1
∆$
89

%

𝑠%$ 9
!

1
𝑠!$

8
𝑥%
𝑠%$
− 9

!

𝑥!
𝑠!$

8
1
𝑠%$

8 9
!

𝑥!$

𝑠!$
8
1
𝑠%$
− 9

!

𝑥!
𝑠!$

8
𝑥%
𝑠%$

𝑠"# =
1
∆$
89

%

𝑠%
$ 9

!

1
𝑠!$

8 9
!

𝑥!
$

𝑠!$
8
𝑥%
𝑠%
& − 9

!

𝑥!
𝑠!$

8 9
!

𝑥!
$

𝑠!$
8
1
𝑠%
&

+
1
∆$
89

%

𝑠%$ − 9
!

1
𝑠!
$ 8 9

!

𝑥!
𝑠!
$ 8

𝑥%$

𝑠%&
+ 9

!

𝑥!
𝑠!
$ 8 9

!

𝑥!
𝑠!
$ 8

𝑥%
𝑠%&

Now write this out as 4 separate sums.
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𝑠+= =
1
∆%
4 >

0

1
𝑠0%

>
0

𝑥0%

𝑠0%
>
,

𝑥,
𝑠,%
− >

0

𝑥0
𝑠0%

>
0

𝑥0%

𝑠0%
>
,

1
𝑠,%

+
1
∆%
4>

,

𝑥,
𝑠,%

− >
0

1
𝑠0%

>
0

𝑥0%

𝑠0%
+ >

0

𝑥0
𝑠0%

%

Δ

𝑠+= = −
1
∆
4>

,

𝑥,
𝑠,%

Finally,
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𝑠01 = −
1
∆ &4

!

𝑥!
𝑠!%

𝑠 23% = 𝑥% & 𝑠0% + 𝑠1% + 2 & 𝑠01& 𝑥

𝑠1% =
1
Δ &4

!

𝑥!%

𝑠!%
𝑠0% =

1
Δ &4

!

1
𝑠!%

𝑠 23
% =

1
Δ & 4

!

𝑥!%

𝑠!%
+ 𝑥% &4

!

1
𝑠!%
− 2 & 𝑥 &4

!

𝑥!
𝑠!%

Note that the error in 7𝑦 depends 
on 𝑥. The further you 
extrapolate from measured 
values, the larger the uncertainty 
on the extrapolation becomes. 

All sums are performed over all 
measured values, 𝑖 = 1,… ,𝑁.

Δ =4
!"#

$
1
𝑠!%
&4
!"#

$
𝑥!%

𝑠!%
− 4

!"#

$
𝑥!
𝑠!%

%
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Check what happens in the special case that 𝑥 = 0:

𝑠 23
% =

1
Δ & 4

!

𝑥!%

𝑠!%
+ 𝑥% &4

!

1
𝑠!%
− 2 & 𝑥 &4

!

𝑥!
𝑠!%

=
1
Δ &4

!

𝑥!
𝑠!%

𝑠1% =
1
Δ4

!

𝑥!%

𝑠!%
This is simply the uncertainty on the 𝑦-intercept:

For the unweighted case, 𝑠! = 𝑠 for all 𝑖 = 1,… ,𝑁

𝑠 23
% =

𝑠%

Δ′ & 4
!

𝑥!% +𝑁 & 𝑥% − 2 & 𝑥 &4
!

𝑥!

Δ′ = 𝑁 &4
!"#

$

𝑥!% − 4
!"#

$

𝑥!

%
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Example:

You have measured 7 linearly correlated 𝑥 − 𝑦-data pairs 𝑥!, 𝑦!
and have knowledge of their individual standard deviation 𝑠3>. What 
straight line fit 𝑓 𝑥 = 𝑚 & 𝑥 + 𝑏 do you obtain and what do you 
know about the uncertainties of the fit and its parameters 𝑚 and 𝑏?

x 
[arbitrary units]

y 
[arbitrary units]

sy
[arbitrary units]

1.0 4.07 0.20
2.0 4.76 0.30
3.0 7.00 0.50
4.0 6.97 1.50
5.0 8.3 1.10
6.0 7.01 2.50
7.0 9.90 2.10

EXCEL’s answer 
(ignoring individual 
point-wise 
uncertainties):
𝑚 = 0.83 ± 0.17
𝑏 = 3.53 ± 0.77
⁄𝜒% 𝑁𝐷𝐹 = ⁄8.65 5
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Now perform linear regression we learned last class, taking into 
account the individual uncertainties.

𝑚 = 1.06 ± 0.16
𝑏 = 2.97 ± 0.30
⁄𝜒% 𝑁𝐷𝐹

= ⁄5.04 5

EXCEL’s answer (ignoring 
individual point-wise 
uncertainties):
𝑚 = 0.83 ± 0.17
𝑏 = 3.53 ± 0.77
⁄𝜒% 𝑁𝐷𝐹 = ⁄8.65 5

The analyzed data was created with a random number generator 
(using the normal distribution). The “truth information” was:
𝑚 = 1.0
𝑏 = 3.0
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How well do we estimate 
interpolated and 
extrapolated y-values?

In this example I just ignored 
the covariant error term. This 
model is simple but wrong.
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In this calculation I utilized 
the covariant error term. This 
model is more complicated 
but correct.
The error boundaries are a 
little tighter as before, the 
point with minimal error 
corresponds to a different x-
value.
The uncertainty is smallest 
where you have data 
(interpolation). It is smaller 
than the individual error bars. 
The uncertainty quickly grows 
where you have no supporting 
data (extrapolation).
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I hope some of the material I presented sticks. These basic 
concepts of data treatment and estimation of certainty are essential 
tools for anybody in the sciences, engineering etc. who has to deal 
with data. In practical situations: if you can’t know how sure to be 
about something, you need to base decisions on “feelings”, 
“convictions”, “common sense” instead of rational thought and 
quantifiable arguments.

There are certain situations where you have no choice because you 
simply don’t know the quantifiable details. If one has a choice ratio
(Latin for reason) is usually a good guide to decision making.
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Appendix 2: derivation of the linear regression relations



Backup: derivation of linear regression 
formulas for slope and y-intercept
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𝜕𝜒%

𝜕𝑚
= −2>

,

𝑦, − 𝑚 4 𝑥, −𝑏 𝑥,
𝑠,%

= 0

𝜒% =>
,

𝑦, − 𝑦?,
%

𝑠,%
=>

,

𝑦, − 𝑚 4 𝑥, − 𝑏 %

𝑠,%

𝜕𝜒%

𝜕𝑏
= −2>

,

𝑦, − 𝑚 4 𝑥, −𝑏
𝑠,%

= 0

Note: in this appendix the 
straight line is parametrized 
as f(x)=m·x+b. Therefore, 
m≡p2 and b≡p1.



𝑚>
,

𝑥,%

𝑠,%
+ 𝑏>

,

𝑥,
𝑠,%
=>

,

𝑦,𝑥,
𝑠,%

−>
,

𝑦,
𝑠,%
+ 𝑚>

,

𝑥,
𝑠,%
+ 𝑏>

,

1
𝑠,%
= 0

−>
,

𝑦,𝑥,
𝑠,%

+ 𝑚>
,

𝑥,%

𝑠,%
+ 𝑏>

,

𝑥,
𝑠,%
= 0

−𝑚>
,

𝑥,
𝑠,%
− 𝑏>

,

1
𝑠,%
= −>

,

𝑦,
𝑠,%

Multiply (I) by ∑%
''
((
and II by∑%

''
(

((

𝑚>
,

𝑥,%

𝑠,%
>
,

𝑥,
𝑠,%
+ 𝑏>

,

𝑥,
𝑠,%
>
,

𝑥,
𝑠,%
=>

,

𝑦,𝑥,
𝑠,%

>
,

𝑥,
𝑠,%

−𝑚>
,

𝑥,
𝑠,%
>
,

𝑥,%

𝑠,%
− 𝑏>

,

1
𝑠,%
>
,

𝑥,%

𝑠,%
= −>

,

𝑦,
𝑠,%
>
,

𝑥,%

𝑠,%

(I) 

(II) 

(I) 

(II) 
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Now add (I) and (II) and define Δ = ∑,
$
@#
$ ∑,

/#
$

@#
$ − ∑,

/#
@#
$

%

𝑏 =
1
∆

9
%

𝑦%
𝑠%
$9

%

𝑥%$

𝑠%
$ −3

#

𝑦#𝑥#
𝑠#
$ 3

#

𝑥#
𝑠#
$ y-intercept

Now modify the calculation from the previous slide to 
get the slope.
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𝑚>
,

𝑥,%

𝑠,%
+ 𝑏>

,

𝑥,
𝑠,%
=>

,

𝑦,𝑥,
𝑠,%

−>
,

𝑦,
𝑠,%
+ 𝑚>

,

𝑥,
𝑠,%
+ 𝑏>

,

1
𝑠,%
= 0

−>
,

𝑦,𝑥,
𝑠,%

+ 𝑚>
,

𝑥,%

𝑠,%
+ 𝑏>

,

𝑥,
𝑠,%
= 0

−𝑚>
,

𝑥,
𝑠,%
− 𝑏>

,

1
𝑠,%
= −>

,

𝑦,
𝑠,%

Multiply (I) by ∑%
)
*(
and II by∑%

''
*(

𝑚>
,

𝑥,%

𝑠,%
>
,

1
𝑠,%
+ 𝑏>

,

𝑥,
𝑠,%
>
,

1
𝑠,%
=>

,

𝑦,𝑥,
𝑠,%

>
,

1
𝑠,%

−𝑚>
,

𝑥,
𝑠,%
>
,

𝑥,
𝑠,%
− 𝑏>

,

1
𝑠,%
>
,

𝑥,
𝑠,%
= −>

,

𝑦,
𝑠,%
>
,

𝑥,
𝑠,%

(I) 

(II) 

(I) 

(II) 
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Now add (I) and (II) and define Δ = ∑,
$
@#
$ ∑,

/#
$

@#
$ − ∑,

/#
@#
$

%

𝑚 =
1
∆

3
#

𝑦#𝑥#
𝑠#
$ 3

#

1

𝑠#
$ −9

%

𝑦%
𝑠%$
9
%

𝑥%
𝑠%$

slope
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Backup: derivation of error on y-
intercept from linear regression fit
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𝑏 =
1
∆

9
%

𝑦%
𝜎%$
9
%

𝑥%$

𝜎%$
−3

#

𝑦#𝑥#
𝜎#
$ 3

#

𝑥#
𝜎#
$

𝜎#$ =9
!

𝜕𝑏
𝜕𝑦!

𝜎!$

𝜕𝑏
𝜕𝑦!

=
1
∆

1
𝜎!
$9

%

𝑥%$

𝜎%
$ −

𝑥!
𝜎!
$9

%

𝑥%
𝜎%
$



𝜎#$ =9
!

1
Δ$

1
𝜎!
$9

%

𝑥%$

𝜎%
$ −

𝑥!
𝜎!
$9

%

𝑥%
𝜎%
$

$

𝜎!$

𝜎#$ =9
!

𝜎!
$

Δ$
1
𝜎!
& 9

%

𝑥%
$

𝜎%$

$

− 2
𝑥!
𝜎!
& 9

%

𝑥%
$

𝜎%$
9
%

𝑥%
𝜎%$

+
𝑥!
$

𝜎!
& 9

%

𝑥%
𝜎%

$

𝜎#$ =
1
Δ$
9
!

1
𝜎!$

9
%

𝑥%
$

𝜎%$

$

− 29
!

𝑥!
𝜎!$

9
%

𝑥%
$

𝜎%$
9
%

𝑥%
𝜎%$

+9
!

𝑥!
$

𝜎!$
9
%

𝑥%
𝜎%$

$

𝜎#$ =
1
Δ$
9
!

𝑥!$

𝜎!
$ 8 9

!

1
𝜎!
$9

%

𝑥%$

𝜎%
$ − 9

%

𝑥%
𝜎%
$

$

The term in square brackets is Δ
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𝜎=% =
1
Δ
>
0

𝑥0%

𝜎0%
Error on y-intercept

𝜎+% =
1
Δ
>
0

1
𝜎0%

After a similar calculation

Error on slope
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