
magnetic recording: field of the write head
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Reminder - Maxwell’s equations

!∇ · !E = ρ/ε0 (1)

!∇× !B− µ0ε0
∂!E

∂t
= µ0!j (2)

!∇ · !B = 0 (3)

!∇× !E +
∂!B

∂t
= 0 (4)

!B =
µ0

4π

! !J(!r′)× (!r−!r′)

|!r−!r′|
d3!r (5)

In general this means we have a scalar electric potential, and a vector magnetic potential.

!E = −!∇φ− ∂!A

∂t
(6)

!B = !∇× !A (7)

Usually we will choose the Coulomb gauge, !∇ · !A = 0, which gives us Poisson’s equation (twice):

−∇2ϕ =
ρ

ε0
(8)

−∇2!A = −µ!j (9)
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Now we worry only about the static case, with no currents (but consider real materials):

∂!E

∂t
=

∂!B

∂t
=!j = 0 (10)

(11)

⇒ !∇ · !D = ρ (12)
!∇× !H = !j = 0 (13)
!∇ · !B = 0 (14)

!∇× !E = 0 (15)
or

∮

S

!D · d!A =

∫

V

ρ dV (16)

∮

S

!B · d!A = 0 (17)

∮

C

!H · d!l =

∫

S

!j · d!A = 0 (18)

(We allow microscopic dipoles, just presume a moment !m coming from nowhere.)

Recall

!Bdipole(!r) =
µ0

4π

[
3(!m ·!r)

r5 !r− !m

r3

]
!m = IA (dir by RHR) (19)
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Gauss’s law & magnetostatics

!∇ · !D = ρ !∇× !E = 0 (20)

Without time dependence ...

!H =
1

µ0
!B− !M (21)

!∇ · !H = − 1

µ0
!∇ · !B− !∇ · !M = −!∇ · !M (22)

!∇× !H = !j (23)

But we also note !∇× !∇F = 0 for any F :

!∇× !H = !∇× (−!∇Ψ) = −!∇× !∇Ψ = 0 =!j (24)

This means we can choose a Ψ such that H = −!∇Ψ

Without time dependence or currents, we have a scalar magnetic potential, and a magnetic analogue of Gauss’s law:

!H = −!∇Ψ (25)
!∇ · !H = = −∇2Ψ = −!∇ · !M ≡ ρm (26)

where ρm is the magnetic charge density, or ρm = −!∇ · !M
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Now magnetostatics is just like electrostatics

!∇ · !D = ∇2φ = ρ (27)
!∇ · !H = ∇2Ψ = ρm = −!∇ · !M (28)

Scalar magnetic potential cannot support sources (requires!j = 0) except by applying discontinuities.

ρm = magnetic poles

At an interface, the magnetic charge per unit area is:

σm ≡ −!n12 · ( !M2 − !M1) (29)
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The basic writing scheme:
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Read/write configurations:

Various Read/Write Configurations
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Longitudinal recording - ring head:
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Perpendicular recording - separated pole head:
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Longitudinal vs. perpendicular media
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Single Pole Heads:

Conceptual Structure of Single Pole Head

SUL

Rec. Layer

Return Yoke
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What is the spatial and time variation of the field near a magnetic source like?
Fourier transforms are useful.

Temporal: x = vt

F (f) =

+∞∫

−∞

f(t)e−2πiftdt (30)

f(t) =

+∞∫

−∞

F (f)e2πiftdf (31)

Spatial: k = 2π/λ = 2πf/v

F (k) =

+∞∫

−∞

f(x)e−ikxdx (32)

f(x) =
1

2π

+∞∫

−∞

F (k)eikxdk (33)

Relation between waveforms:

f(x) ≡ f(t)

F (k) = v · F (f)
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Function Fourier Transform

Differentiation ∂f(x)
∂x ikF (k)

Translation f (x− a) e−ikaF (k)
Modulation eik0xf (x) F (k − k0)
Convolution f (x) ∗ g(x) F (k)G(k)
Multiplicaiton f (x)g(x) F (k) ∗G(k)

recall the definition of convolution

f(x) ∗ g(x) ≡
+∞∫

−∞

f(x′)g(x− x′)dx′ (34)

and that Fourier transforms are normalized

Parseval’s theorem:

+∞∫

−∞

|f(x)|2dx =
1

2π

+∞∫

−∞

|F (k)|2dk (35)

(normalization conditions vary by discipline ...)
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Consider the free-space magnetostatic potential in 2D:

∇2Ψ = 0 and H = −!∇Ψ (36)

⇒ ∂2Ψ(x, y)

∂x2 +
∂2Ψ(x, y)

∂y2 = 0 (37)

Now take the Fourier transform of this with respect to x

FTx

[
∂2Ψ(x, y)

∂x2 +
∂2Ψ(x, y)

∂y2

]
= 0 (38)

(ik)2Ψ(k, y) +
∂2Ψ(k, y)

∂y2 = 0 (39)

=⇒ ∂2Ψ(k, y)

∂y2 = k2Ψ(k, y) (40)

We know this equation. A general solution for Ψ(k, y) is

Ψ(k, y) = A+(k)eky + A−(k)e−ky (41)

If we place any sources of magnetic charges at y < 0, with

lim
y→∞

Ψ(k, y) = 0 ⇒ Ψ(k, y) = Ψ(k, 0)e−|k|y (y > 0) (42)

In other words ... the Fourier transform of the potential depends only on relative location. If we know it at one
place, we know it everywhere.
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So what are the fields in real space?

Ψ(x, y) = FT−1 [Ψ(k, y)] = FT−1
[
Ψ(k, 0)e−|k|y

]
(43)

= Ψ(x, 0) ∗ FT−1
[
e−|k|y

]
(44)

= Ψs(x) ∗ y

π (x2 + y2)
(45)

Here we define Ψs(x) ≡ Ψ(x, 0) as the surface magnetic potential at y = 0.

Now we can find the magnetic potential at any point in terms of the surface potential at y = 0:

Ψ(x, y) =
y

π

+∞∫

−∞

Ψs(x′)

(x− x′)2 + y2
dx′ (46)

Our “sources” are magnetic surface charges, and knowing their surface potential at y = 0 is sufficient to determine
the magnetic field and potential anywhere else in surrounding free space.
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Karlqvist (ring) head equation

Fields from real heads are ugly. Karlqvist came up with an idealized inductive head model:

Karlqvist model assumptions:

1. The permeability of the magnetic core or film is infinite

2. The region of interest is small compared with the size of the magnetic core. Core is wider than
gap, and head is infinite in the z dir. Approximately 2D.

3. The magnetic potential across the head gap varies linearly with x. Thus the field in the head gap
Hg is constant down to y = 0, and the magnetic potential in the core is zero since permeability is
infinite. The surface magnetic potential at y = 0 is the same as deep across the head gap

Ψs(x) ≡






gHg/2 x ≤ −g/2

−Hgx |x| ≤ g/2

−gHg/2 x ≥ g/2

(47)
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Schematic:

Hg

g

y

x
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Potential variation:

g

-g/2 +g/2

y

+gHg/2

-gHg/2

-g/2 +g/2

!(x, y!0)

x
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Read/write configurations:
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What are the potential and field for this head, for y > 0? Fringing fields for parallel plate capacitor . . .

V
+

V
 -
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Ψ(x, y) =
y

π

+∞∫

−∞

Ψs(x′)

(x− x′)2 + y2
dx′ (48)

= −Hg

π

[(
x +

g

2

)
tan−1

(
x + g

2
y

)
−

(
x− g

2

)
tan−1

(
x− g

2
y

)
− y

2
ln

(
x + g

2

)2
+ y2

(
x− g

2

)2
+ y2

]
(49)

Hx(x, y) = −∂Ψ

∂x
=

Hg

π
tan−1




gy

x2 + y2 −
(g

2

)2



 (50)

Hy(x, y) = −∂Ψ

∂y
= −Hg

2π
ln





(
x +

g

2

)2
+ y2

(
x− g

2

)2
+ y2



 (51)

Contours of constant Hx are circles going through the head gap corners.
Small gap limit, y , g:

⇒ Hx(x, y) = +
Hgg

π

[
y

x2 + y2

]
(52)

Hy(x, y) = −Hgg

π

[
x

x2 + y2

]
(53)

This is just the field produced by a line current located at the head gap edge.
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Schematic

g

p50

(x0,y)
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Head Fields:

ph587 23 Spring 2009



Head Fields:
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Electromagnets

! ! ! ! !!
core
µc

current 
I

“solenoid” coil
N windings

g

gap: B1, H1

core: 
B2, H2

path l

!

Surface S around pole tip: flux is zero

ΦS = BgAg −BcAc = 0 (54)

If Ag = Ac, then Bg = Bc.

Now take a line integral around Γ:
∮

Γ

!H · d!l = µ0

∫
!j ·!n da ⇒ H1g + H2l = µ0

(
IN

A

)
A = µ0NI (55)
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We need to know B(H) for the core ... if we work in the small field regime (“minor loops"), then we can approximate
it as linear: B2 ∼ µcH2, where µc is the core permeability:

BgAg = BcAc = Agµ0H1 = AcµcH2 (56)

⇒ H1 =
µc

µ0
H2 (if Ac = Ag) (57)

So the field in the gap is enhanced by a factor µc. Using this:

Gap field:

H1g + H2l = H1g +
µ0

µc
H1l = µ0NI (58)

H1

[
µ0

µc
l + g

]
= µ0NI (59)

⇒ H1 =
NI(

µ0

µc

)
l + g

(60)

Basically: we can relate the gap field to I and the core material properties.

High µ gives higher gap field for a given I . High Bs gives high max gap field. (Why does Hc matter?)

“Head efficiency" = portion of NI across the head gaps compared to coil ...

E ≡ H1g

NI
=

H1g

H2l + H1g
=

(
1 +

H2

H1

l

g

)−1

≤ 1 (61)
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Back to the small gap limit, y , g:

Hx(x, y) = +
Hgg

π

[
y

x2 + y2

]
and Hy(x, y) = −Hgg

π

[
x

x2 + y2

]
(62)

we can now write down the gap field for a real material:

Hx(x, y) = +

(
NI

π + lAgπ
µAcg

)[
y

x2 + y2

]
and Hy(x, y) = −

(
NI

π + lAgπ
µAcg

)[
x

x2 + y2

]
(63)

effect of finite permeability - reduced field at small gap!

Hx(0, y)

ni/y
=

1

π

2y

g + lAg/µAc
tan−1 g

2y
(64)
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Materials:

Desirable Properties for Head Materials

 1!High Saturation Magnetization Bs"""""

 2!High Permeability µ""""""""""

 3!Low Coercivity Hc""""""""

 4!Appropriate Loss Factor !""""

 5!Low Magnetostriction """"""

 6!High Resistivity #"""""""""""""""

 7!Weak Temperature Dependence""""

 8!Small Aging Effect""""""""

 9!High Wear Resistance""""""

10. High Corrosion Resistance """"

11. Good Machinability""""""""
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Constraints

Head-medium Interface (Spacing between head and medium must be critically small.)

1. Surfaces: flat, smooth, free of asperities, resistant to wear

2. Flexible media: heads and media are in contact

3. Rigid disks: Heads are mounted on a slider flying above rotating disk (20µm→ 50nm).

• Occasional head crash

• Disk magnetic layers are protected by lubricant and very thin protective overcoat layers (C)
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Everything we have done so far is (mostly) valid for a single-pole write head!

Same thing, turned on its side ... (switch x and y, only one pole)!
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Finite pole extent:

y = 0.01

Hy(x, 0.01): z dependence

y

x

z

1

0.1

Excited by 

homogenious 

field

Fig. 6.26
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Soft Underlayer:

Effect of SUL

Fig. 6.27
z = 0

(Center)

z = 0.75

(Edge: 0.5)

x

x

Hy varies less rapidly with y in the presence of SUL!

With SUL

Without SUL
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Side Shield:

Effect of Side Shield (Lindholm, 1980)
Surface-Integration methid

Fig. 6.10
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Side Shield:

Effect of Side Shield (continued)

Head edge

z

Shield

Potential at y = 0
Without shield With shield

z
x

Head edge

Fig. 6.9
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Materials:

Desirable Properties for Head Materials

 1!High Saturation Magnetization Bs"""""

 2!High Permeability µ""""""""""

 3!Low Coercivity Hc""""""""

 4!Appropriate Loss Factor !""""

 5!Low Magnetostriction """"""

 6!High Resistivity #"""""""""""""""

 7!Weak Temperature Dependence""""

 8!Small Aging Effect""""""""

 9!High Wear Resistance""""""

10. High Corrosion Resistance """"

11. Good Machinability""""""""
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Constraints

Head-medium Interface (Spacing between head and medium must be critically small.)

1. Surfaces: flat, smooth, free of asperities, resistant to wear

2. Flexible media: heads and media are in contact

3. Rigid disks: Heads are mounted on a slider flying above rotating disk (20µm→ 50nm).

• Occasional head crash

• Disk magnetic layers are protected by lubricant and very thin protective overcoat layers (C)
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Inductive read process

ph187
2Feb09
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What can we sense?

Head moving over transitions = time-varying magnetic flux.

What we will show: inductive writing and reading are the same thing.

More precisely: writing is the effect of head flux on media. Reading is the effect of media flux on
the head. They are simply related through mutual inductance.
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Maxwell’s equations and solutions
Maxwell’s equations:

!∇ · !E =
ρ

ε0
(65)

!∇× !E = −∂!B

∂t
(66)

!∇ · !B = 0 (67)

c2 !∇× !B =
!j

ε0
+

∂!E

∂t
(68)

Their solutions:

!E = −!∇ϕ− ∂!A

∂t
(69)

!B = !∇× !A (70)

ϕ(1, t) =

∫
ρ(2, t− r12/c)

4πε0r12
dV2 (71)

!A(1, t) =

∫ !j(2, t− r12/c)

4πε0c2r12
dV2 (72)

Note that 1
ε0µ0

= c2.
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Faraday’s law and induction

X B(t)

E

ds

A

Induced EMF in a loop of wire:

E = −dΦ

dt
= − d

dt

∫
!B ·!n da = − d

dt

∫ (
!∇× !A

)
·!n da = − d

dt

∮
!A · d!s (73)

(Faraday + definition of !A + Stokes)

If the wire is fixed, and !B is the same all over the surface:

E = − d

dt
(B⊥A) = −A

dB⊥
dt

(74)
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Mutual Inductance
One coil surrounding another (1 = inner, 2 = outer).
Coil 2 encloses the flux of coil 1 completely.

Field inside coil 1 & 2:

B1 = µ0
N1I1

l
(75)

Assume coils are long, so Boutside ≈ 0.

Induced voltage in coil 2 due to B1:

E2 = N2

(
−A2

dB1

dt

)
= −N2A2

dB1

dt
(76)

dB1

dt
=

d

dt

[
µ0

N1I1

l

]
= µ0

N1

l

dI1

dt
(77)

⇒ E2 = −N2A2
µ0N1

l

dI1

dt
= −µ0N1N2A2

l

dI1

dt
≡M12

dI1

dt
(78)

M12 = −µ0N1N2A2

l
is the Mutual inductance of the pair of coils. (79)
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Mutual Inductance
Suppose now we have 2 arbitrary coils.

Induced EMF in coil 1 due to I2:

E1 = − d

dt

∫

(1)

!B2 ·!n da = − d

dt

∮

(1)

!A1 ·d!s1 (80)

If we assume !A at loop 1 comes only from I2, we can write it as a line integral around loop 2:

Vector potential around loop 1 due to I2:

!A1 =
µ0

4π

∫

(2)

!j2
r12

dV2 =
µ0

4π

∮

(2)

!I2

r12
d!s2 (81)

Which gives us the EMF in coil 1 as:

E1 = −µ0

4π

d

dt

∮

(1)

∮

(2)

!I2 d!s2

r12
· d!s1 (82)

(We relied on the cross-section of the wires being small compared to r12 ...)
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Mutual Inductance
I2 does not depend on the coordinates, since we assume stationary circuits.

Therefore we can pull I2 out of the integrals:

E1 = −µ0

4π

d

dt

∮

(1)

∮

(2)

!I2 d!s2

r12
· d!s1 =

(
d!I2

dt

)

−
µ0

4π

∮

(1)

∮

(2)

d!s2 · d!s1

r12



 (83)

The integrals are just describing the geometry of the coils. Since the coil geometry is static, they
just give a constant, which we again call M12.

And now we get something familiar:

Mutual inductance of two coils:

E1 = M12
d!I2

dt
with M12 = −µ0

4π

∮

(1)

∮

(2)

d!s2 · d!s1

r12
(84)

Now it is easy to see why M12 = M21 ≡M ... right? (!a ·!b = !b ·!a)

Physically, the integral is something like an average separation of the coils, weighted more for
parallel bits.
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Self Inductance & “Back EMF"
What have we missed? (1) What if both coils carry current? (2) Field from a coil affecting itself.

Including self-inductance and “back emf"

E2 = M21
dI1

dt
+ M22

dI2

dt
and E1 = M12

dI2

dt
+ M11

dI1

dt
(85)

Where again M21 = M12 ≡M. (We could write E i =
∑

j Mijİj ... but that is a bit much!)

Usually, we say M11 = −L1 and M22 = −L2.
This is the “normal" inductance we think of, we can calculate it (but NOT from our integral).

In general,

M12 = k
√

L1L2 (86)

where k < 1 is the “coefficient of coupling" of the two coils.
Physically, k represents something like the amount of coil 1’s flux that coil 2 captures.
With only one coil, we have only the effect of the coil on itself, and get the usual result:

Only one coil: self-inductance

E = L
dI

dt
= −M11

dI

dt
The “F=ma" of circuits. (87)
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“Reciprocity”
Now assume that induced currents are small, and “back-emf" can be neglected.

I1

I2!12 = !21
I2

I1
= -M12 I2

!21 = !12
I1

I2
= -M21 I1

One coil energized:

E1 = M12
dI2

dt
= −dΦ12

dt
(88)

integrate the rightmost two parts with respect to t:

∫
M12

dI2

dt
dt = −

∫
dΦ12

dt
dt (89)

M12I2 = −Φ12 or M12 = −Φ12

I2
(90)

But we know that M12 = M21! So we can show:
Reciprocity:

−M12 =
Φ12

I2
=

Φ21

I1
or Φ12I1 = Φ21I2 (91)

We can find one flux from the other, so long as we can find the fictitious current that would exist in
the opposite case.

Now think about a small element of magnetic material ...
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“Reciprocity”
So far, everything is very general and coordinate-free. Most generally, we know

M(İ1 − İ2) = M11İ1 −M22İ2 (92)

We can only use flux when the back EMF is negligible, only one coil is on, or r12 is small

Two coils, one I, B constant, no back-emf:
Φ12

I2
=

Φ21

I1
or Φ12I1 = Φ21I2 (93)

For any pair of coils, calculating the induced EMF or current in one due to the other is sufficient.

It doesn’t matter which one actually carries a current, we can calculate the most convenient case.

If we have n1 and n2 turns in the coils:

Φ12n1I1 = Φ21n2I2 (94)
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“Reciprocity”
Why bother? Mutual inductance tells us that:

flux through pickup coil due to media
0

flux through media due to head field

One problem is much easier than the other.
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Electromagnets

Surface S around pole tip: flux is zero

ΦS = B1A1 −B2A2 = 0 (95)

If A1 = A2, then B1 = B2.

Now take a line integral around Γ:
∮

Γ

!H · d!l = µ0

∫
!j ·!n da ⇒ H1l1 + H2l2 = µ0

(
IN

A

)
A = µ0NI (96)

The loop Γ encloses a current density of j = NI/A. Break up the d!l integral into a part through
the core, and a part through the air gap.
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Electromagnets
We need to know B(H) for the core ... if we work in the small field regime (“minor loops"),
then we can approximate it as linear - B2 ∼ µH2, where µ is the permeability:

B1A1 = B2A2 = A1µ0H1 = A2µH2 (97)

⇒ H1 =
µ

µ0
H2 (if A1 = A2) (98)

So the field in the gap is enhanced by a factor µ. Using this:

Gap field:

H1l1 + H2l2 = H1l1 +
µ0

µ
H1l2 = µ0NI (99)

H1

[
µ0

µ
l2 + l1

]
= µ0NI (100)

⇒ H1 =
NI

µ0
µ l2 + l1

(101)

Basically: we can relate the gap field to I and the core material properties.

High µ gives higher gap field for a given I . High µ is high efficiency.
High Bs gives high max gap field.

Why does Hc matter?

ph587 49 Spring 2009



Iron core inductors

∮

Γ

!H · d!s = µ0

∫

S

!j ·!n da

Hl = µ0NI

H = µ0
NI

l
or I =

Hl

µ0N

dU

dt
= V I =

(
N

dB

dt

) (
Hl

µ0N

)

=
lA

µ0
H

dB

dt

U =
lA

µ0

∫
H dB

The energy used in driving the core is proportional to the area of the B −H loop!
Head loop narrow, soft materials. Low loss, less heating, less thermal noise.
Further: we want low remanence. Why?
Resistivity: eddy current losses. Ideally, get benefit of M without j. Ferrite core inductors.
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The Head

Since the mutual inductance is a property of a pair of loops, we can relate the flux
through I1 to the field of the media or vice-versa.

Which is easier? Finding the flux through the media from the head. Remember that we
can model the bit of media as a dipole, or a current loop.
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The Head
Media is moving at velocity v, head is fixed

⇒ media position = vt ≡ x

lateral displacement between media region and head center

⇒ head-media displacement = x− x = x− vt
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The Head

dx

dy

dz

Mx

I2

vt
Mr

-Mr

If we were writing, we could say:

Flux dΦ21 through the element of medium due to a current in the head coil

dΦ21 = !B ·!n da = µ0

(
!H1 + !M1

)
·!n da = µ0

!H1 ·!n da = µ0H1xdydz (102)

M1 (due to the head) is zero in the media, and only Hx gives a non-zero contribution.
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The Head
What we really want is the opposite for reading.

We want Φ12 - the “pickup" flux in the reader coil due to the bit of media dx dy dz. Now we use
our earlier result:

Head flux at media ⇔ media flux at head
dΦ12

I2
=

dΦ21

I1
or dΦ12 =

I2

I1
dΦ21 (103)

(flux at head due to media) = (ratio of currents)× (flux at media due to head)

What we have shown is that reading and writing are basically the same thing! We do not need to solve
the problem twice.

From now on, H refers to the head field, and M refers to the media magnetization.
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The Media

! = I2A

dx

dy

dz

Mx

I2

I2

So what is I2?

Moment of a current: µ = IA or µ = MV :

µ = I2A = I2 dy dz (104)
= M2 dV = M2x dx dy dz (105)

⇒ I2 = M2x dx (106)

Remember: the media is moving! So what we really mean by “Mx” is Mx(x− x).

Using mutual inductance and accounting for moving media:

dΦ12 =
I2

I1
dΦ21 =

Mxdx

I1
dΦ21 =

Mxdx

I1
µ0Hx dy dz (107)

=
µ0Hx(x, y, z)

I1
Mx(x− x, y, z) dx dy dz (108)

Note that Hx/I1 is independent of I1 ... recall the gap field:

Hg

I1
=

N
µ0
µ l2 + l1

(109)
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The Signal
Now we can just integrate dΦ12 over the media - infinite in x, y : d→ d + δ, z : −W/2 → W/2.

If we assume everything is homogeneous over the track width W , the dz integral gives a factor W .

Also assume that M is uniform along the thickness (y) direction.

Φ12 =
!

media

dΦ12 dV (110)

= µ0

∞∫

−∞

dx

d+δ∫

d

dy

W/2∫

−W/2

dz

[
Hx(x, y, z)

I1

]
Mx(x− x, y, z)

= µ0W

∞∫

−∞

dx

d+δ∫

d

dy

[
Hx(x, y, z)

I1

]
Mx(x− x) (111)

Flux is not helpful, we want the induced voltage:

Induced V as a function of media position

Vx(x) = −dΦ12

dt
= −µ0W

d

dt

∞∫

−∞

dx

d+δ∫

d

dy

[
Hx(x, y, z)

I1

]
Mx(x− x) (112)
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The Signal
Only Mx depends on time, through x = vt. Chain rule madness:

dMx(x− x)

dt
=

dx

dt
· dMx(x− x)

dx
and dx

dt
= v (113)

Vx(x) = −µ0Wv

∞∫

−∞

dx

d+δ∫

d

dy

[
Hx(x, y, z)

I1

]
dMx(x− x, y, z)

dx
(114)

We sense the flux of moving magnetic charge! (the inner part looks a bit like !∇ · !M ...)

If !∇ · !M = 0 or v = 0, we read nothing!

ASSUMPTIONS we rely on:

1. The “write current" I2 is small enough that hysteresis is absent, and B ∼ µH .

2. The “write current" and read excitation are quasi-static.

3. By that we mean flat permeability vs. frequency.

4. And by frequency we really mean flat permeability over the bandwidth.
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Sharp transition read signal

y

x

vt

Mr

-Mr

Moving head maps M(x) →M(t), so M(x, y, z) → V (t)

Perfectly sharp transition:

M(x− x) =

{
−Mr x < x

Mr x > x
(115)

dM(x− x)

dx
=
−dMx(x− x)

dx
= −2Mrδ(x−x) (116)

Vx(x) = −µ0Wv

∞∫

−∞

dx

d+δ∫

d

dy
Hx(x, y)

I1
[−2Mrδ(x− x)] (117)

= 2µovWMr

d+δ∫

d

dy
Hx(x, y)

I1
(118)

Signal from a sharp transition:

Vx(x) = 2µ0vWMr

[
Hx(x, d)

I1
· δ

]
(δ 2 d, thin media) (119)
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Arctan transition read signal
Arctan transition

Mx(x− x) =
2Mr

π
tan−1

(
x− x

a

)
(120)

dMx(x− x)

dx
= −dMx(x− x)

dx
= −2Mr

π

[
1

1 + (x−x)2

a2

]
= −2Mr

π

[
a2

a2 + (x− x)2

]
(121)

We already know what Hx for a Karlqvist head is ...

Hx(x, y) =
Hg

π

[
tan−1

(
x + g/2

y

)
− tan−1

(
x− g/2

y

)]
(122)

So we can set up Vx(x):

Vx(x) = −µ0Wv

∞∫

−∞

dx

d+δ∫

d

dy

[
Hx(x, y, z)

I1

]
dMx(x− x)

dx
(123)

= µ0vW

∞∫

−∞

dx

d+δ∫

d

dy
Hg

π

[
tan−1

(
x + g/2

y

)
− tan−1

(
x− g/2

y

)]
2Mra2

a2 + (x− x)2
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Arctan transition read signal
without proof:

∞∫

−∞

dx

a2 + (x− x)2

[
tan−1

(
x + c

y

)
− tan−1

(
x− c

y

)]
=

π

a

[
tan−1

(
x + c

y + a

)
− tan−1

(
x− c

y + a

)]
(124)

Vx(x) =
2µ0vwHgMr

πI1

d+δ∫

d

dy tan−1

(
x + g/2

y + a

)
− tan−1

(
x− g/2

y + a

)
(125)

!! But

tan−1

(
x + g/2

y + a

)
− tan−1

(
x− g/2

y + a

)
= Hx(x, y + a) (126)

⇒ Vx(x) =
2µ0vWHgMr

πI1

d+δ∫

d

dy Hx(x, y+a) =
2µ0vWHgMr

πI1

d+δ+a∫

d+a

dy Hx(x, y) (127)

An arctan transition at a spacing d looks like a step transition at d + a!
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Arctan transition read signal
An arctan transition at a spacing d looks like a step transition at d + a!

Or, a finite transition width acts as an effective spacing.

Basically transition broadening and increased spacing do the same thing.

For thin media (δ 2 d), things are simpler.

Signal from an arctan transition, thin media:

Vx(x) =
2µ0vWHgMr

πI1

d+δ+a∫

d+a

dyHx(x, y) ≈ 2µ0vWMr

[
Hx(x, d + a)

I1
· δ

]

Vx(x) ≈ 2µ0vWMrδ
Hx(x, d + a)

I1
(δ 2 d, thin media) (128)

The voltage readback also scales with Mrδ

But it scales the opposite way compared to media.

A never-ending series of ugly tradeoffs. :-(
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arctan + Karlqvist + thin media
Putting it all together: arctan media + Karlqvist head

Karlqvist head field, small gap (y , δ)

Hx(x, y) =
Hgg

π

y

x2 + y2
(129)

Arctan transition, thin media & Karlqvist head

Vx(x) = 2µ0vWMrδ
Hgg

πI1
tan−1

[
g(d + a)

x2 + (d + a)2 − (g/2)2

]
(130)

≈ 2µ0vWMrδ
Hgg

πI1

[
d + a

x2 + (d + a)2

]
(131)

The readback pulse is just a Lorentzian of width Γ = 2(d + a).

And .... the homework:

give a (justifiable) order of magnitude estimate of Vx
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