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PH 253 Exam I
Instructions

1. Solve five of the seven problems below. All problems have equal weight.
2. Do your work on separate sheets.
3. Bring your exam paper with you when you leave - you need it for the next homework.
4. You are allowed 1 sheet of standard 8.5x11 in paper and a calculator.

LeClair
F101. A train 1/2 km long (as measured by an observer on the train) is traveling at a speed of 100 km/hr.

Two lightning bolts strike the ends of the train simultaneously as determined by an observer on the
ground. What is the time separation as measured by an observer on the train?

2. The speed of light in still water is c/n, where n is the index of refraction, approximately n=4/3 for
water. Fizeau, in 1851, found that the speed (relative to the laboratory) of light in water moving at speed
V (relative to the laboratory) could be expressed as

u =
c

n
+ kV (1)

where the “dragging coefficient” was measured by him to be k≈0.44. Determine the value of k predicted
by the Lorentz velocity transformations. Note (1 + x)−1≈1 − x for x�1.

3. An electron initially moving at constant speed v is brought to rest with uniform deceleration a lasting
for a time t = v/a. Compare the electromagnetic energy radiated during this deceleration with the
electron’s initial kinetic energy. Express the ratio in terms of two lengths, the distance light travels in
time t and the classical electron radius re =e2/4πεomc2.

4. In an experiment to find the value of h, light at wavelengths 218 and 431 nm were shone on a clean
sodium surface. The potentials that stopped the fastest photoelectrons were 5.69 and 0.59 V, respectively.
What values of h and W, the sodium work function, are deduced?

5. In Compton scattering, an incident photon of energy Eγ and momentum p = hk scatters off of an
electron at rest. The photon emerges at angle θ with reduced energy E′γ and momentum p′=hk′. The
electron is ejected with energy Ee− and momentum pe− .

Show that the exiting photon’s energy as a function of its energy and ejection angle θ is

E′γ =
mc2

(1 − cos θ) + mc2/Eγ
(2)
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6. (a) An FM radio transmitter has a power output of 130 kW and operates at a frequency of 98.3 MHz.
How many photons per second does the transmitter emit?

(b) A pulsed ruby laser emits light at 694.3 nm. For a 13.6 ps pulse containing 3.40 J of energy, how
many photons are in the pulse? 1 ps is 10−12s.

7. A molecule is known to exist in an unstable higher energy configuration for ∆t=10 nsec, after which
it relaxes to its lower energy stable state by emitting a photon.

(a) What uncertainty in the frequency ∆f of the emitted photon is implied? (b) If this state is being
probed with Nuclear Magnetic Resonance (NMR) at a frequency of f ≈ 500 MHz, what is the relative
uncertainty in the measurement, ∆f/f?



Constants:
NA = 6.022× 1023 things/mol

ke ≡ 1/4πεo = 8.98755× 109 N ·m2 ·C−2

εo = 8.85× 10−12 C2/N ·m2

µ0 ≡ 4π× 10−7 T ·m/A

e = 1.60218× 10−19 C

h = 6.6261× 10−34 J · s = 4.1357× 10−15 eV · s

 h =
h

2π

kB = 1.38065× 10−23 J · K−1 = 8.6173× 10−5 eV · K−1

c =
1

√
µ0ε0

= 2.99792× 108 m/s

hc = 1240 eV · nm

me = 9.10938× 10−31 kg mec2 = 510.998keV

mp = 1.67262× 10−27 kg mpc2 = 938.272MeV

Quadratic formula:

0 = ax2 + bx2 + c =⇒ x =
−b±

√
b2 − 4ac

2a

Basic Equations:
~Fnet =

d~p

dt
= m~a Newton’s Second Law

~Fcentr = −
mv2

r
r̂ Centripetal

P =
∆E

∆t
power

E & M
~F12 = ke

q1q2
r212

r̂12 = q2~E1 ~r12 =~r1 − ~r2

~E1 = ~F12/q2 = ke
q1
r212

r̂12

~F B = q~v × ~B

EM Waves:

c = λf =
|~E |

|~B |

I =

[
photons

time

] [
energy
photon

] [
1

Area

]
I =

energy
time · area

=
EmaxBmax

2µ0
=

power (P)

area
=

E2
max

2µ0c

Oscillators

E =

(
n +

1

2

)
hf

E =
1

2
kA2 =

1

2
ω2mA2 = 2π2mf2A2

ω = 2πf =
√

k/m

Approximations, x�1

(1 + x)n ≈ 1 + nx +
1

2
n (n + 1) x2 tanx ≈ x +

1

3
x3

ex ≈ 1 + x +
1

2
x sinx ≈ x −

1

6
x3 cosx ≈ 1 −

1

2
x2

Radiation

Prad =
q2a2

6πεoc3 total emitted power, E and B fields

Etot = σT4 σ = 5.672× 10−8 W ·m−2 · K−4

Tλmax = 2.9× 10−3 m · K Wien

Equantum = hf

〈Eoscillator〉 = hf/
(
ehf/kBT − 1

)
I(λ,T) =

(const)
λ5

[
e

hc
λkbT − 1

]−1

I(f, t) = (const) f3

[
e

hf
kbT − 1

]−1

Relativity

γ =
1√

1 − v2
c2

∆t′moving = γ∆tstationary = γ∆tp

L′
moving =

Lstationary
γ

=
Lp

γ

x′ = γ (x − vt) x = γ
(
x′ + vt′

)
t′ = γ

(
t −

vx

c2

)
t = γ

(
t′ +

vx′

c2

)

vobj =
v + v′

obj

1 +
vv′

obj
c2

v′
obj =

vobj − v

1 −
vvobj

c2

KE = (γ − 1)mc2 =

√
m2c4 + c2p2 − mc2

Erest = mc2

p = γmv

E2 = p2c2 + m2c4 =
(
γmc2

)2

Quantum
E = hf =  hω p = h/λ =  hk = E/c λf = c photons

λf − λi =
h

mec
(1 − cosθ)

λ =
h

|~p |
=

h

γmv
≈ h

mv
de Broglie

∆x∆p >
h

4π

∆E∆t >
h

4π

eVstopping = KEelectron = hf − ϕ = hf − W

Calculus of possible utility: ∫
1

x
dx = lnx + c∫

udv = uv −

∫
vdu

Vectors:

|~F | =
√

F2
x + F2

y magnitude θ = tan−1
[

Fy

Fx

]
direction

r̂ = ~r /|~r | construct any unit vector

let ~a = ax x̂ + ay ŷ + az ẑ and ~b = bx x̂ + by ŷ + bz ẑ

~a · ~b =axbx + ayby + azbz =

n∑
i=1

aibi = |~a ||~b | cosθ

|~a × ~b | = |~a ||~b | sinθ

~a × ~b =

∣∣∣∣∣∣∣
x̂ ŷ ẑ

ax ay az

bx by bz

∣∣∣∣∣∣∣ = (aybz − azby) x̂ + (azbx − axbz) ŷ + (axby − aybx) ẑ
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