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PH 253 Exam 2: Solutions
1. Given the wave function

ψ(x) =

Neκx x < 0

Ne−κx x > 0
(1)

(a) Find N needed to normalize ψ.
(b) Find 〈x〉, 〈x2〉, and ∆x.

In order to normalize the wavefunction, we need to split up the usual integral into two integrals over
[−∞, 0] and [0,∞] since the function is defined separately over those intervals. Since the wave function
is piecewise continuous, this need not trouble us though.

1 =

∞∫
−∞

|ψ|2 dx =

0∫
−∞

|ψ|2 dx+

∞∫
−0

|ψ|2 dx =

0∫
−∞

N2e2κx dx+

∞∫
−0

N2e−2κx dx (2)

= N2

[
1
2κ
e2κx

∣∣∣∣0
−∞+

1
2κ
e−2κx

∣∣∣∣∞
0

]
=
N2

κ
(3)

=⇒ N =
√
κ (4)

Next, we find 〈x〉 in the usual way, again taking care to split the integral into two bits:

〈x〉 =

∞∫
−∞

x|ψ|2 dx =

0∫
−∞

xN2e2κx dx+

∞∫
−0

xN2e−2κx dx = 0 (5)

By symmetry, the two integrals are equal in magnitude and opposite in sign, so the expected position is
at the origin. Finding 〈x2〉 requires only a bit more math:

〈x2〉 =

∞∫
−∞

x2|ψ|2 dx =

0∫
−∞

x2N2e2κx dx+

∞∫
−0

x2N2e−2κx dx (6)

=
N2

4κ3

(
2κ2x2 − 2κx+ 1

)
e2κx

∣∣∣∣0
−∞+

N2

4κ3

(
2κ2x2 + 2κx+ 1

)(
−e−2κx

)∣∣∣∣∞
0

(7)

=
N2

2κ3
=

1
2κ2

(8)

Given 〈x〉 and 〈x2〉,

∆x =
√
〈x2〉− 〈x〉2 =

1√
2κ

(9)
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2. An electron in a hydrogen atom is in a state described by the wave function

ψ =
1

√
3 (2ao)

3/2

r

ao
e−r/2ao (10)

where ao is the Bohr radius.

(a) What is the most probable value of r?
(b) What is 〈r〉?

The most likely distance corresponds to the distance at which the probability of finding the electron
is maximum. This is distinct from the expected value of the radius 〈r〉. The probability of finding an
electron at a distance r in the interval [r, r+dr], in spherical coordinates, is the squared magnitude of the
wavefunction times the volume of a spherical shell of thickness dr and radius r:

P(r)dr = |ψ|2 · 4πr2 dr or P(r) = |ψ|2 · 4πr2 (11)

Given ψ above, we have

P(r) =

∣∣∣∣ 1
√

3 (2ao)
3/2

r

ao
e−r/2ao

∣∣∣∣2 · 4πr2 =
πr4

6a5
o

e−r/ao (12)

The most probable radius is when P(r) takes a maximum value, which must occur when dP/dr=0 and
d2P/dr2<0. Thus:

dP

dr
= 0 =

(
π

6a5
o

)
d

dr

(
r4e−r/ao

)
=

(
π

6a5
o

)(
4r3e−r/ao −

r4

ao
e−r/ao

)
(13)

0 =

(
πr3

6a5
o

e−r/ao

)(
4 −

r

ao

)
(14)

=⇒ r = {0, 4ao,∞} (15)

One can either apply the second derivative test or make a quick plot of P(r) to verify that r=4ao is the
sole maximum of the probability distribution, and hence the most probable radius, while r=0 and r=∞
are minima.

On to 〈r〉. We must first verify that the wave function is normalized to get a correct value for 〈r〉 – this
did not matter for the most likely value of r, since we differentiated the wave function and any overall
normalization constants are irrelevant. Let us now define an overall constant multiplier for the wave
function A to fix normalization and find its value. That is, let ψ → Aψ and enforce normalization to
find A.
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1 =

∞∫
0

A2P(r)dr = A2

∞∫
0

πr4

6a5
o

e−r/ao dr =
A2π

6ao

∞∫
0

r4

a4
o

e−r/ao dr (16)

At this point, it most clever to change variables to u=r/ao, so du=dr/ao, which gives us a well-known
integral:

1 =
A2π

6ao

∞∫
0

r4

a4
o

e−r/ao dr =
A2π

6

∞∫
0

u4e−u du =
A2π

6
4!
15

= 4πA2 (17)

=⇒ A2 =
1
4π

(18)

Now we can find 〈r〉 correctly. Since the wave function is spherically symmetric, we can just integrate
over radius using the volume element dV=4πr2 dr:

〈r〉 =

∞∫
0

rA2|ψ|2 4πr2 dr =

∞∫
0

r5

24a5
o

e−r/ao dr =
1
24

∞∫
0

(
r

ao

)5

e−r/ao dr (19)

Again, at this point, it most clever to change variables to u= r/ao, so du=dr/ao, which again gives us
a well-known integral:

〈r〉 =
ao

24

∞∫
0

u5e−u du =
ao

24
5!
16

= 5ao (20)

Of course, we did not check that this wave function is normalized.

3. Quantum harmonic oscillator. The harmonic oscillator potential is V(x)= 1
2mω

2
ox

2; a particle of mass
m in this potential oscillates with frequency ωo. The ground state wave function for a particle in the
harmonic oscillator potential has the form

ψ(x) = Ae−ax2
(21)

(a) By substituting V(x) and ψ(x) into the one-dimensional time-independent Schrödinger equation, find
expressions for the ground-state energy E and the constant a in terms of m,  h, and ωo.
(b) Apply the normalization condition to determine the constant A in terms of m,  h, and ωo.

Given the form of ψ, we note

∂2ψ

∂x2
=
(
4a2x2 − 2a

)
ψ (22)

And thus



Name & CWID

Eψ =
− h2

2m
(
4a2x2 − 2a

)
ψ+

1
2
mω2

ox
2ψ (23)

or Eψ =

(
1
2
mω2

o −
2a2 h2

m

)
x2ψ+

a h2

m
ψ (24)

If we are to have a unique solution for all x, the x2 coefficients must vanish, i.e.,

1
2
mω2

o −
2a2 h2

m
= 0 =⇒ a =

mωo

2 h
(25)

Similarly, the terms of the form (constant)ψ must equate, giving:

E =
a h2

m
=

1
2
 hωo (26)

This is precisely what we have found before, the ground state energy of the harmonic oscillator is half
the Planck energy quantum. Normalization requires that

1 =

∞∫
−∞

|ψ(x)|2 dx (27)

Noting that

∞∫
−∞

e−cx2
dx =

√
π

c
(28)

we have

1 =

∞∫
−∞

A2e−2ax2
dx = A2

√
π

2a
(29)

=⇒ A2 =

√
2a
π

or A =
4

√
2a
π

= 4

√
mωo

π h
(30)

The ground state wave function is thus

ψ(x) = 4

√
mωo

π h
e−(mωo2 h )x2

(31)

4. By considering the visible spectrum of hydrogen and He+, show how you could determine spectro-
scopically if a sample of hydrogen was contaminated with helium. (Hint: look for differences in the
visible emission lines, λ≈390∼750 nm. A difference of 10 nm is easily measured.)

We know the energies in a hydrogen atom are just En = −13.6 eV/n2 for a given level n. For the He+

ion, the only real difference is the extra positive charge in the nucleus. If we have Z positive charges in
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the nucleus, the energies become En = −13.6 eVZ2/n2. For Z = 2, we just end up multiplying all the
energies by a factor 4. The questions are: does this lead to any new radiative transitions, are they in the
visible range, and are they well-separated enough? We can just list the energy levels for the two systems
and see what we come up with.

We already know that the visible transitions in Hydrogen occur when excited states relax to the n= 2
level, and that for large n the transitions will probably have an energy too high to be in the visible range.
Thus, we can probably find a new transition for He+ by just considering the first several levels alone.

H He+

n En (eV) En (eV)
1 −13.6 −13.6 · 4
2 −13.6 · 1

4 −13.6
3 −13.6 · 1

9 −13.6 · 4
9

4 −13.6 · 1
16 −13.6 · 1

4
5 −13.6 · 1

25 −13.6 · 4
25

We see a couple of things already. The n=2 state for He+ happens to accidentally have the same energy
as the n= 1 state for H, likewise for the n= 4 state for He+ and the n= 2 state for H. That means that
we can’t just pick transitions at random, some of them will accidentally have the same energy.

However, the n = 3 state for He+ has the curious fraction 4/9 in it, which can’t possibly occur for
H. Transitions into the n = 3 state should yield unique energies. Let’s compute the visible transitions
in hydrogen H, since there are only a few, and see if some He+ transitions stick out in the in-between
wavelengths:

H transition λH (nm) He+ transition λHe+ (nm)
3 → 2 656 4 → 3 469
4 → 2 486 3 → 2 164
5 → 2 434
6 → 2 410

Already with just the 4 → 3 transition in He+, we have an expected emission (or absorption) at 469 nm,
a full 17 nm from the nearest H line, and well in the visible range to boot (a nice pretty blue). Should be
easy to pick out!

5. Find 〈x〉, 〈x2〉, and ∆x=
√
〈x2〉− 〈x〉2 (in terms of a) for a particle in the ground state of the one-

dimensional simple harmonic oscillator, where:

ψ0 =

√
1

a
√
π
e−x2/2a2

(32)

The following integrals may be useful:
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∞∫
0

x2e−ax2
dx =

1
4

√
π

a3

∞∫
−∞

x3e−ax2
dx =

∞∫
−∞

xe−ax2
dx = 0

∞∫
0

x4e−ax2
dx =

3
8

√
π

a5
(33)

For the ground state, we have

〈x〉 =

∫
x|ψ0|

2 dx =
1

a
√
π

∫∞
−∞ xe−x2/a2

dx = 0 (34)

The integral vanishes by symmetry, since the integrand is an odd function of x (and, it was given above).

Classically, a harmonic oscillator is something like a mass on a spring, which oscillates uniformly about
its equilibrium point at x= 0. This means that its average position, over a full cycle of motion, is just
x = 0. The quantum version is no different: if we made many repeated measurements of the particle’s
position, we would find the average position to be x= 0. Evaluating 〈x2〉 proceeds similarly, except that
the integral will not vanish, since it is an even function of x

〈x2〉 =

∫
x2|ψo|

2 dx =
1

a
√
π

∫∞
−∞ x2e−x2/a2

dx =
1

a
√
π
· 2 · 1

4
·
√

π

(1/a2)3
=

1
2
a2 (35)

Here the factor of 2 comes from doubling the given integral, with limits of 0 and ∞, since the desired
integral is symmetric about x = 0 with limits of −∞ and ∞. The expectation value of the potential
energy can then be found if we like by noting U= 1

2kx
2, and thus

〈U〉o =
1
2
k〈x2〉o =

1
4
ka2 =

1
4
mω2

o

(  h
mω

)
=

1
4
 hω =

1
2
Eo (36)

As expected, the potential energy is one half the total ground state energy of Eo= 1
2
 hωo. Finally, we can

find the uncertainty in position for both the ground state:

∆xo =
√
〈x2〉o − 〈x〉2o =

√
〈x2〉o =

a√
2

(37)

6. A particle bound in a certain one-dimensional potential has a wave function described by the following
equations:

ψ(x) =


0 x < −L

Ae−ikx cos πxL −L 6 x 6 L

0 x > L

(38)

(a) Find the value of the normalization constant A by enforcing the condition
∫

all x |ψ(x)|2 dx=1.
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(b) What is the probability that the particle will be found between x=0 and x=L/4?

We can find A by enforcing unit probability of finding the particle somewhere, i.e., by integrating |ψ|2

over all x. Since ψ is zero outside of the region 06x6L, we need only integrate over that range. Noting
that |e−ikx|=(e−ikx)∗(eikx)=1,

1 =

L∫
0

|ψ|2 dx =

L∫
0

A2 cos2
(πx
L

)
dx = A2

[
x+

L

π
sin
(πx
L

)
cos
(πx
L

)]L
0

= A2L (39)

=⇒ A =

√
1
L

(40)

The probability that the particle is found between 0 and L/4 is obtained by integrating the square of the
wave function between those limits, rather than over all infinity:

P =

L/4∫
0

|ψ(x)|2 dx =

L/4∫
0

∣∣∣∣
√

1
L
eikx cos

(πx
L

)∣∣∣∣2 dx =
1
L

L/4∫
0

cos2
πx

L
dx =

1
2L

[
L

4
+
L

π

1
2

]
=

1
8

+
1
4π

≈ 0.204



Constants:
NA = 6.022× 1023 things/mol

ke ≡ 1/4πεo = 8.98755× 109 N ·m2 ·C−2

εo = 8.85× 10−12 C2/N ·m2

µ0 ≡ 4π× 10−7 T ·m/A

e = 1.60218× 10−19 C

h = 6.6261× 10−34 J · s = 4.1357× 10−15 eV · s

 h =
h

2π
hc = 1239.84eV · nm

kB = 1.38065× 10−23 J · K−1 = 8.6173× 10−5 eV · K−1

c =
1

√
µ0ε0

= 2.99792× 108 m/s

me = 9.10938× 10−31 kg mec
2 = 510.998keV

mp = 1.67262× 10−27 kg mpc
2 = 938.272MeV

mn = 1.67493× 10−27 kg mnc
2 = 939.565MeV

Schrödinger

i h
∂Ψ

∂t
= −

 h2

2m

d2

dx2
Ψ+V(x)Ψ 1D time-dep

Eψ = −
 h2

2m

d2

dx2
ψ+V(x)ψ 1D time-indep∫∞

−∞ |ψ(x)|2 dx = 1 P(in [x,x+dx]) = |ψ(x)|2 1D∫∞
0

|ψ(r)|2 4πr2 dr = 1 P(in [r, r+dr]) = 4πr2|ψ(r)|2 3D

〈xn〉 =

∫∞
−∞ xnP(x)dx 1D 〈rn〉 =

∫∞
0
rnP(r)dr 3D

∆x =
√
〈x2〉− 〈x〉2

Basic Equations:
~Fnet =m~a Newton’s Second Law

~Fcentr = −
mv2

r
r̂ Centripetal

~F12 = ke
q1q2
r212

r̂12 = q2~E1 ~r12 =~r1 − ~r2

~E1 = ~F12/q2 = ke
q1
r212

r̂12

~FB = q~v × ~B

0 = ax2 + bx2 + c =⇒ x =
−b±

√
b2 − 4ac

2a

Oscillators

E =

(
n+

1

2

)
hf

E =
1

2
kA2 =

1

2
ω2mA2 = 2π2mf2A2

ω = 2πf =
√
k/m

Approximations, x�1

(1 + x)n ≈ 1 +nx+
1

2
n (n+ 1)x2 tanx ≈ x+

1

3
x3

ex ≈ 1 + x+
1

2
x sinx ≈ x−

1

6
x3 cosx ≈ 1 −

1

2
x2

Misc Quantum
E = hf p = h/λ = E/c λf = c photons

λf − λi =
h

mec
(1 − cosθ)

λ =
h

|~p |
=

h

γmv
≈ h

mv

∆x∆p >
h

4π
∆E∆t >

h

4π

eVstopping = KEelectron = hf−ϕ = hf−W

Bohr
En = −13.6 eV/n2 Hydrogen

En = −13.6 eV
(
Z2/n2

)
Z protons, 1 e−

Ei −Ef = −13.6 eV

(
1

n2
f

−
1

n2
i

)
= hf

L =mvr = n h

v2 =
n2  h2

m2
er2

=
kee

2

mer

Quantum Numbers
l = 0, 1, 2, . . . , (n− 1) L2 = l(l+ 1) h2

ml = −l, (−l+ 1), . . . , l Lz =ml  h

ms = −± 1

2
Sz =ms  h S2 = s(s+ 1) h2

dipole transitions: ∆l = ±1,∆ml = 0,±1,∆ms = 0

µsz = ±µB

~µ s = 2~SµB

Eµ = −~µ · ~B

J2 = j(j+ 1) h2 j = l± 1

2

Jz =mj  h mj = −j, (−j+ 1), . . . , j

Calculus of possible utility: ∫
1

x
dx = lnx+ c∫
udv = uv−

∫
vdu∫

sinaxdx = −
1

a
cosax+C∫

cosaxdx =
1

a
sinax+C

d

dx
tanx = sec2 x =

1

cos2 x∫
e−ax dx = −

1

a
e−ax +C∫∞

0
xne−ax dx =

n!

an+1

∞∫
0

x2e−ax2
dx =

1

4

√
π

a3

∞∫
−∞ x

3e−ax2
dx =

∞∫
−∞ xe

−ax2
dx = 0

∞∫
0

x4e−ax2
dx =

3

8

√
π

a5

8


