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PH 253 Exam 2: Solutions

1. Given the wave function

Nek* x <0

Ne ** x>0

(a) Find N needed to normalize 1.
(b) Find (x), (x?), and Ax.

In order to normalize the wavefunction, we need to split up the usual integral into two integrals over
[—00, 0] and [0, 0o] since the function is defined separately over those intervals. Since the wave function

is piecewise continuous, this need not trouble us though.

0

o] 0 [e'e) 0 o]
1= J W2 dx = J Wp)? dx + J W[? dx = J N2e2<x dx + J N2e=2%% dx (2)
—00 —00 0 —00 —0

— N2 |:]'62KX _l_iefQKx >

N2
2k 2k ] Tk G)

. N =k (4)

Next, we find (x) in the usual way, again taking care to split the integral into two bits:

o 0 00
(x) = J x| dx = J xNZe2kx dx+JxN2e_2K" dx =0 (s)
—00 —00 —0

By symmetry, the two integrals are equal in magnitude and opposite in sign, so the expected position is

at the origin. Finding (x?) requires only a bit more math:

[ 0 00
(x?) = J X2 dx = J xINZe2%* dx + J x*NZe 2% dx (6)

—00 —00 —0

2 0 NQ [e%e}
=13 <2K2X2 — 2Kkx + 1> e2xx _OO—I—@ <2K2X2 + 2kx + 1) <—e2KX> . ?)
N? 1
T8 2 ®
Given (x) and (x?),
— 2 7_ L

Ax =/ (x?) = (x)? = —= (9)
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2. An electron in a hydrogen atom is in a state described by the wave function

1 T —r/2a
= ——;—¢€ ° 10

where a, is the Bohr radius.

(a) What is the most probable value of r?
(b) What is (r)?

The most likely distance corresponds to the distance at which the probability of finding the electron
is maximum. This is distinct from the expected value of the radius (r). The probability of finding an
electron at a distance 1 in the interval [r, v+ dr], in spherical coordinates, is the squared magnitude of the

wavefunction times the volume of a spherical shell of thickness dr and radius

P(r)dr =[P - 4nr?dr  or  P(r) = P[] - 47r? (11)
Given 1 above, we have
2
T —1/2a,

1V3(20,)77 a0

The most probable radius is when P(r) takes a maximum value, which must occur when dP/dr=0 and
d?P/dr?<0. Thus:

4
r _
. 47TT2 = 6756 /0o (12)
ao

dP n\d (4 1/ m Sy L
— 0 = el T/ao ) — ( = 4 r/a, | ,—7/a,
0= <6a5> dr (T ¢ ) <6ag) ( re aoe (13)
— —T/ao 4 — L
(w J(-3) w9
== ={0,4a,, 0o} (15)

One can either apply the second derivative test or make a quick plot of P(r) to verify that r=4a, is the
sole maximum of the probability distribution, and hence the most probable radius, while r=0and r=00

are minima.

On to (r). We must first verify that the wave function is normalized to get a correct value for (r) - this
did not matter for the most likely value of r, since we differentiated the wave function and any overall
normalization constants are irrelevant. Let us now define an overall constant multiplier for the wave

function A to fix normalization and find its value. That s, let \p — A1 and enforce normalization to

find A.
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1= JAzP(T) dr = A? J T o=/t gp = 210 J T e/d0 gy (16)
6ap 6a, J a}
0 0 0

At this point, it most clever to change variables to u=r/a,, so du=dr/a,, which gives us a well-known

integral:
1_A27'coor4 Cr/ay _Azﬂoo 4w, APmAl
_6a0Ja‘ée dT—GJue du—Tﬁ—ﬁlﬁA (17)
0 0
= A= (13

Now we can find (r) correctly. Since the wave function is spherically symmetric, we can just integrate

over radius using the volume element dV =47r? dr:

00 0 5 1 o 5
(r) = JT‘A211)2 4rr? dr = J T e/ gr = J <T> e /% dr (19)
0

24a3 24 ao
0 0

Again, at this point, it most clever to change variables to u=r1/a,, so du=dr/a,, which again gives us

a well-known integral:

T !
(ry=— Ju5eu du=—— =5a, (20)
0

Of course, we did not check that this wave function is normalized.

3. Quantum harmonic oscillator. The harmonic oscillator potential is V(x) = 1mw?x?; a particle of mass

m in this potential oscillates with frequency wo. The ground state wave function for a particle in the

harmonic oscillator potential has the form

2

P(x) = Ae ¥ (21)

(a) By substituting V(x) and {(x) into the one-dimensional time-independent Schrodinger equation, find
expressions for the ground-state energy E and the constant a in terms of m, h, and w,.

(b) Apply the normalization condition to determine the constant A in terms of m, h, and w,.

Given the form of 1, we note

2
% = (4a®x* — 2a) Y (22)

And thus
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—h? 2.2 1 2.2
B = o (4a x° — 2a) P+ imwox v (23)
1 2a%h? h?
or E¢=<;mﬁ— - )ﬂ¢+in¢ (24)

If we are to have a unique solution for all x, the x? coefficients must vanish, i.e.,

1 5, 2a*n? mwe
— P e 0 pr—
5 MWo o = a o (25)
Similarly, the terms of the form (constant){p must equate, giving:
ah? 1
E= W = ihwo (26)

This is precisely what we have found before, the ground state energy of the harmonic oscillator is half

the Planck energy quantum. Normalization requires that

1= | WP ax (7)
— 00
Noting that
J e dx = \/f (28)
we have
1= J AZe 20X gy — A2 % (20)
2 2
= A% = ;(1 or A:4;(1:4TT;;)10 (30)

The ground state wave function is thus

Y(x)

4[MWo _(mea )2
— (31)

4. By considering the visible spectrum of hydrogen and He™, show how you could determine spectro-
scopically if a sample of hydrogen was contaminated with helium. (Hint: look for differences in the

visible emission lines, Aa&2390~750 nm. A difference of 10 nm is easily measured.)

We know the energies in a hydrogen atom are just E, =—13.6eV/n? for a given level n. For the He™

ion, the only real difference is the extra positive charge in the nucleus. If we have Z positive charges in
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the nucleus, the energies become E,, = —13.6eVZ?/n%. For Z =2, we just end up multiplying all the
energies by a factor 4. The questions are: does this lead to any new radiative transitions, are they in the
visible range, and are they well-separated enough? We can just list the energy levels for the two systems

and see what we come up with.

We already know that the visible transitions in Hydrogen occur when excited states relax to the n =2
level, and that for large n the transitions will probably have an energy too high to be in the visible range.

Thus, we can probably find a new transition for He™ by just considering the first several levels alone.

H He™
n  En (V) En (V)
1 —136  —13.6-4
2 —136-3  —13.6
3 —136-5 —136-3
4 —136-55 —136-3
s —13.6-5 —13.6- 5

We see a couple of things already. The n =2 state for Het happens to accidentally have the same energy
as the n =1 state for H, likewise for the n =4 state for He™ and the n =2 state for H. That means that

we can’t just pick transitions at random, some of them will accidentally have the same energy.

However, the n = 3 state for He™ has the curious fraction 4/9 in it, which can’t possibly occur for
H. Transitions into the n = 3 state should yield unique energies. Let’s compute the visible transitions
in hydrogen H, since there are only a few, and see if some He™ transitions stick out in the in-between

wavelengths:

H transition Ay (nm) He™ transition Ape+ (nm)

3—2 656 4—3 469
4—2 486 3—2 164
5—2 434
6— 2 410

Already with just the 4 — 3 transition in He™, we have an expected emission (or absorption) at 469 nm,
a full 17 nm from the nearest H line, and well in the visible range to boot (a nice pretty blue). Should be

easy to pick out!

s. Find (x), (x?), and Ax = 1/(x2) — (x)2 (in terms of a) for a particle in the ground state of the one-

dimensional simple harmonic oscillator, where:

o 1 —X2/2(12
-LI)O - aﬁe (32)

The following integrals may be useful:
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o o o o0
1 3
JxQec"‘2 dx = 1 % J x3em %" dx = J xe” " dx =0 Jx4ea"2 dx = 3 / % (33)
0 —00 —o00 0
For the ground state, we have
2 1 0 —x2/a?
(x) = | xpo|*dx = avm xe dx =0 (34)
—0

The integral vanishes by symmetry, since the integrand is an odd function of x (and, it was given above).

Classically, a harmonic oscillator is something like a mass on a spring, which oscillates uniformly about
its equilibrium point at x = 0. This means that its average position, over a full cycle of motion, is just
x =0. The quantum version is no different: if we made many repeated measurements of the particle’s
position, we would find the average position to be x =0. Evaluating (x?) proceeds similarly, except that

the integral will 7ot vanish, since it is an even function of x

(x?) = Jx2|1p 2 dx = 1 Joo x2e /9% gx = 1 2 L 1c12 (35)

B © Caym) o Caym T4\ (1/a2)? 2 »
Here the factor of 2 comes from doubling the given integral, with limits of 0 and oo, since the desired
integral is symmetric about x = 0 with limits of —oco and co. The expectation value of the potential

energy can then be found if we like by noting U= 1kx?, and thus

1 1 h 1 1
<u>0 - 7k<x2>o == ZkﬂZ = me% <mw> = Zhw = EEO (36)

As expected, the potential energy is one half the total ground state energy of Eo = 1hiw,. Finally, we can

find the uncertainty in position for both the ground state:

Mxo =V (x})o — ()3 =/ (x%)o = (37)

Sl

6. A particle bound in a certain one-dimensional potential has a wave function described by the following

equations:
0 x < -—L
b(x) = ¢ Ae ™ cos 7 —L<x<L (38)
0 x>1L

(a) Find the value of the normalization constant A by enforcing the condition [, [b(x)[* dx=1.
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(b) What is the probability that the particle will be found between x=0 and x=L1/4?

We can find A by enforcing unit probability of finding the particle somewbere, i.e., by integrating |?
over all x. Since \ is zero outside of the region 0 <x <L, we need only integrate over that range. Noting
that |efikx‘ — (efikx)* (eikx) =1,

L L
L
_ 2 30 2 2 (TX a2 L /mx X a2
1—J|1J,>| dX_JA cos (L>dX—A [x-i—nSln(L)cos(L)h—AL (39)
0 0
1
= A= L (40)

The probability that the particle is found between 0 and L/4 is obtained by integrating the square of the

wave function between those limits, rather than over all infinity:

L/4

2
1 5 TIX 1L L1 1 1
_ = Tadx= — |-+ =2 =24+ — ~0.204
dx Jcos de 2]_[4—#“2} 8+47r 0.20




Constants:
N A = 6.022 x 1023 things/mol

ke = 1/4meo = 8.98755 x 109N -m2.C~2
€o =8.85x 1012 C2 /N - m?
Mo =47t x 1077 T-m/A
e=1.60218 x 1019 C
h=6.6261x 10 3%].s=4.1357 x 10~ 15¢V -5

he 2 hc—1239.84eV.nm
27

kp = 1.38065 x 10" 23] . K~ 1 =8.6173 x 102 eV.-K !

c= =2.99792 x 108 m/s

1
vHo€o
me =9.10938 x 10 31kg  mec? =510.998keV
mp =1.67262 x 102" kg  mpc? =938.272MeV

mn =1.67493 x 1027 kg mnc? = 939.565 MeV

Schrddinger
oY h2 a2 :
lhﬁ = 727d?‘y+V(x)\y 1D time-dep
n? d2 .
Ep = 727@11) + V(x)y 1D time-indep

ro W(x)2dx=1  P(inlx,x+dx])=hp(x)> D

Jw W(r)24amr2dr=1  Plin[r,v 4 dr]) = 4rer2 [P (r)[?
0

Basic Equations:
Fret = ma Newton’s Second Law

2
Feentr = — MY~ 4 Centripetal
= di492 . = e
Fi2 =ke —5— F12 = d2k1 Ti12=T1—T2
T12
F.o_7 _ q1 -
E1=Fi12/d2 =ke 5 Fi12
Ti2
Fg=qvxB
—b+ Vb2 -4
0=ax2 +bx2 fc=— x = =Yo7 —2ac
2a
Oscillators
1
E= = | hf
(n+ 2)
1
E= 5kA2 = - w?mA? =2n2mf2A2

Approximations, x < 1

(1+x)"z1+nx+%n(n+1)x2 tanxzx+%x3

1
eXm1+x+ sx 3

sinx & x 1x
i X — =
2 6

1
~1— 2
cosx x

3D

2

Misc Quantum
E =hf p=h/A=E/c AM=c photons
h
Af— A = 1-— <]
= Aq mec( cos9)
A_h_ hoh
CET ymy T omy
h h
> — > —
AxAp > i AEAt > i
evstopping = KE¢lectron = hf —@ = hf =W
Bohr
En = —13.6eV/n? Hydrogen
En = —13.6eV (Zz/n2) Z protons, 1 e
1 1
E;—Ef = —13.6&V(—5 ——5 |=hf
nyoon
L =mvr = mnh
2 nPn? kee?
T om2r2 T mer
Quantum Numbers
1=0,1,2,...,(n—1)  L?=1(1+ 1)
my=—1(-1+1),...,1 Ly=mqh
1
ms=-%5 Sz=msh $2 =s(s+1)h?

dipole transitions: Al = £1, Amy =0,£1,Amgs =0

Hsz =Eup
Wy =25pg
Epn=-f-B
s . 1
2=+ 0n? =1k
Je=mjh my = —j, (1),

Calculus of possible utility:
J 1 dx =Inx +c
x

Judv = uvfj.vdu
. 1
sin axdx = g cos ax + C
1.
cos axdx = 5 sinax +C
2 1

d t
— tanx =sec” x = —5—
dx cos? x

1
J'67°X dx:faefax +C



