University of Alabama

Department of Physics and Astronomy
PH 253 / LeClair
Spring 2010

Exam 2 Sample Problems

1. The wavefunction of a particle in a double slit experiment with slit spacing d and slit width $w<\mathrm{d}$ (w,d both positive quantities) in the plane of the slits is described by

$$
\psi(x)=\left\{\begin{array}{ll}
C & -\frac{d}{2}-\frac{w}{2} \leqslant x \leqslant-\frac{d}{2}+\frac{w}{2} \quad \text { (slit a) } \tag{1}\\
C & \frac{d}{2}-\frac{w}{2} \leqslant x \leqslant \frac{d}{2}+\frac{w}{2} \\
0 & \text { otherwise }
\end{array} \quad\right. \text { (slit b) }
$$

(a) Determine the normalization constant C .
(b) Determine $\langle x\rangle$ and $\left\langle x^{2}\right\rangle$ in the limit $w \ll d$, i.e., ignore any terms of order w / d and higher in the end result.
(c) Again for $w \ll d$, find the uncertainty in position $\Delta x=\sqrt{\left\langle x^{2}\right\rangle-\langle x\rangle^{2}}$.

Solution: We can normalize the wavefunction by integrating its square over all space and setting the result equal to 1 . This enforces that the particle has unit probability of being somewhere.

$$
\begin{align*}
\int|\psi(x)|^{2} \mathrm{~d} x & =\int_{-\mathrm{d} / 2-w / 2}^{-\mathrm{d} / 2+w / 2} \mathrm{C}^{2} \mathrm{~d} x+\int_{\mathrm{d} / 2-w / 2}^{\mathrm{d} / 2+w / 2} \mathrm{C}^{2} \mathrm{~d} x=\mathrm{C}^{2} w+\mathrm{C}^{2} w=2 w \mathrm{C}^{2}=1 \tag{2}\\
\Longrightarrow \mathrm{C} & =\frac{1}{\sqrt{2 w}} \tag{3}
\end{align*}
$$

Finding $\langle x\rangle$ is not much harder, in principle.

$$
\begin{align*}
\langle x\rangle & =\int x|\psi(x)|^{2} d x=\int_{-\mathrm{d} / 2-w / 2}^{-\mathrm{d} / 2+w / 2} x \mathrm{C}^{2} \mathrm{~d} x+\int_{\mathrm{d} / 2-w / 2}^{\mathrm{d} / 2+w / 2} x \mathrm{C}^{2} \mathrm{~d} x=\left.\frac{1}{2} \mathrm{C}^{2} x^{2}\right|_{-\mathrm{d} / 2-w / 2} ^{-\mathrm{d} / 2+w / 2}+\left.\frac{1}{2} \mathrm{C}^{2} x^{2}\right|_{\mathrm{d} / 2-w / 2} ^{\mathrm{d} / 2+w / 2} \\
& =\frac{1}{2} \mathrm{C}^{2}\left[\left(-\frac{\mathrm{d}}{2}+\frac{w}{2}\right)^{2}-\left(-\frac{\mathrm{d}}{2}-\frac{w}{2}\right)^{2}\right]+\frac{1}{2} \mathrm{C}^{2}\left[\left(\frac{\mathrm{~d}}{2}+\frac{w}{2}\right)^{2}-\left(\frac{\mathrm{d}}{2}-\frac{w}{2}\right)^{2}\right] \\
& =\frac{1}{2} \mathrm{C}^{2}\left[\frac{\mathrm{~d}^{2}}{4}-\frac{\mathrm{d} w}{2}+\frac{w^{2}}{4}-\frac{\mathrm{d}^{2}}{4}-\frac{\mathrm{d} w}{2}-\frac{w^{2}}{4}\right]+\frac{1}{2} C^{2}\left[\frac{\mathrm{~d}^{2}}{4}+\frac{\mathrm{d} w}{2}+\frac{w^{2}}{4}-\frac{\mathrm{d}^{2}}{4}+\frac{\mathrm{d} w}{2}-\frac{w^{2}}{4}\right] \\
& =\frac{1}{2} \mathrm{C}^{2}[-\mathrm{d} w]+\frac{1}{2} C^{2}[\mathrm{~d} w]=0 \tag{4}
\end{align*}
$$

Of course, since the integrand is an odd function of x and the integration limits are symmetric, we could have seen that $\langle x\rangle$ must be zero just based on symmetry. Finding $\left\langle x^{2}\right\rangle$ we have no such trick to make use of ...

$$
\begin{align*}
\left\langle x^{2}\right\rangle & =\int x^{2}|\psi(x)|^{2} d x=\int_{-\mathrm{d} / 2-w / 2}^{-\mathrm{d} / 2+w / 2} x^{2} \mathrm{C}^{2} \mathrm{~d} x+\int_{\mathrm{d} / 2-w / 2}^{\mathrm{d} / 2+w / 2} x^{2} \mathrm{C}^{2} \mathrm{~d} x=\left.\frac{1}{3} \mathrm{C}^{2} x^{3}\right|_{-\mathrm{d} / 2-w / 2} ^{-\mathrm{d} / 2+w / 2}+\left.\frac{1}{3} \mathrm{C}^{2} x^{3}\right|_{\mathrm{d} / 2-w / 2} ^{\mathrm{d} / 2+w / 2} \\
& =\frac{1}{3} C^{2}\left[\left(-\frac{\mathrm{d}}{2}+\frac{w}{2}\right)^{3}-\left(-\frac{\mathrm{d}}{2}-\frac{w}{2}\right)^{3}\right]+\frac{1}{3} C^{2}\left[\left(\frac{\mathrm{~d}}{2}+\frac{w}{2}\right)^{3}-\left(\frac{\mathrm{d}}{2}-\frac{w}{2}\right)^{3}\right] \tag{5}
\end{align*}
$$

At this point, we have a great many terms to evaluate. However, since we need only terms of first order in w / d, we can divide out a factor $\mathrm{d}^{3} / 2^{3}$ and simplify by taking only the first terms in the expansion:

$$
\begin{align*}
\left\langle x^{2}\right\rangle & =\frac{1}{24} \mathrm{C}^{2} \mathrm{~d}^{3}\left[\left(-1+\frac{w}{\mathrm{~d}}\right)^{3}+\left(1+\frac{w}{\mathrm{~d}}\right)^{3}+\left(1+\frac{w}{\mathrm{~d}}\right)^{3}-\left(1-\frac{w}{\mathrm{~d}}\right)^{3}\right] \\
& =\frac{1}{12} \mathrm{C}^{2} \mathrm{~d}^{3}\left[\left(1+\frac{w}{\mathrm{~d}}\right)^{3}-\left(1-\frac{w}{\mathrm{~d}}\right)^{3}\right] \approx \frac{1}{12} \mathrm{C}^{2} \mathrm{~d}^{3}\left[1+3 \frac{w}{\mathrm{~d}}-1+3 \frac{w}{\mathrm{~d}}\right] \\
& =\frac{1}{2} \mathrm{C}^{2} \mathrm{~d}^{2} w=\frac{1}{2}\left(\frac{1}{2 w}\right) \mathrm{d}^{2} w=\frac{1}{4} \mathrm{~d}^{2} \tag{6}
\end{align*}
$$

Finally,

$$
\begin{equation*}
\Delta x=\sqrt{\left\langle x^{2}\right\rangle-\langle x\rangle^{2}}=\sqrt{\frac{1}{4} \mathrm{~d}^{2}-0}= \pm \frac{1}{2} \mathrm{~d} \tag{7}
\end{equation*}
$$

2. The state of a free particle is described by the following wave function

$$
\psi(x)= \begin{cases}0 & x<-b \tag{8}\\ A & -b \leqslant x \leqslant 3 b \\ 0 & x>3 b\end{cases}
$$

(a) Determine the normalization constant A.
(b) What is the probability of finding the particle in the interval $[0, \mathrm{~b}]$?
(c) Determine $\langle x\rangle$ and $\left\langle x^{2}\right\rangle$ for this state.
(d) Find the uncertainty in position $\Delta x=\sqrt{\left\langle x^{2}\right\rangle-\langle x\rangle^{2}}$.

Solution: As above, we can normalize the wavefunction by integrating its square over all space.

Conveniently, the wavefunction is zero except over the interval $[-\mathbf{b}, 3 \mathbf{b}]$

$$
\begin{equation*}
\int|\psi(x)|^{2} d x=\int_{-b}^{3 b} A^{2} d x=4 b A^{2}=1 \quad \Longrightarrow \quad A=\frac{1}{2 \sqrt{b}} \tag{9}
\end{equation*}
$$

The probability of finding the particle in $[0, b]$ means integrating the probability density, $|\psi|^{2}$ over that interval:

$$
\begin{equation*}
\mathrm{P}(\mathrm{x} \in[0, \mathrm{~b}])=\int_{0}^{\mathrm{b}} A^{2} \mathrm{~d} x=\int_{0}^{\mathrm{b}} \frac{1}{4 \mathrm{~b}} \mathrm{~d} x=\frac{1}{4} \tag{10}
\end{equation*}
$$

Finding $\langle x\rangle$ proceeds as above, though now the integration interval is asymmetric, and we expect a nonzero value:

$$
\begin{equation*}
\langle x\rangle=\int_{-b}^{3 b} \frac{x}{4 b} d x=\frac{1}{4 b}\left[\frac{1}{2} x^{2}\right]_{-b}^{3 b}=\frac{1}{8 b}\left(9 b^{2}-b^{2}\right)=b \tag{11}
\end{equation*}
$$

Similarly,

$$
\begin{equation*}
\left\langle x^{2}\right\rangle=\int_{-b}^{3 b} \frac{x^{2}}{4 b} d x=\frac{1}{12 b}\left[x^{3}\right]_{-b}^{3 b}=\frac{1}{12 b}\left[27 b^{3}+b^{3}\right]=\frac{7}{3} b^{2} \tag{12}
\end{equation*}
$$

Thus,

$$
\begin{equation*}
\Delta x=\sqrt{\left\langle x^{2}\right\rangle-\langle x\rangle^{2}}=\sqrt{\frac{7}{3} \mathrm{~b}^{2}-\mathrm{b}^{2}}= \pm \frac{2 \mathrm{~b}}{\sqrt{3}} \tag{13}
\end{equation*}
$$

3. The hydrogen $1 s$ wavefunction is

$$
\begin{equation*}
\psi_{1 s}=\frac{1}{\sqrt{\pi} a_{o}^{3 / 2}} e^{-r / a_{o}} \tag{14}
\end{equation*}
$$

(a) Find the most probable distance from the origin to find an electron. $\left(a_{0}\right)$
(Hint: maximize $P(r)=4 \pi r^{2}|\psi|^{2}$.)
(b) Find the expected distance from the origin, $\langle r\rangle \cdot\left(\frac{3}{2} a_{o}\right)$ Note

$$
\int_{0}^{\infty} x^{n} e^{-a x} d x=\frac{n!}{a^{n+1}}
$$

Solution: The probability of finding an electron at radius r in the interval $[r, r+d r]$ is

$$
\begin{equation*}
\mathrm{P}(\mathrm{r})=4 \pi \mathrm{r}^{2}|\psi|^{2}=\frac{4 r^{2}}{\mathrm{a}_{\mathrm{o}}^{3}} e^{-2 r / \mathrm{a}_{\mathrm{o}}} \tag{15}
\end{equation*}
$$

Thus, the maximum probability occurs when

$$
\begin{align*}
\frac{d P}{d r} & =0=\frac{8 r}{a_{o}^{3}} e^{-2 r / a_{o}}-\frac{8 r^{2}}{a_{o}^{4}} e^{-2 r / a_{o}} \tag{16}\\
0 & =\frac{8 r^{2}}{a_{o}^{3}}-\frac{8 r^{2}}{a_{o}^{4}} \tag{17}\\
0 & =1-\frac{r}{a_{o}} \tag{18}\\
r & =a_{o} \tag{19}
\end{align*}
$$

The expected value of r is found via

$$
\begin{equation*}
\langle r\rangle=\int_{0}^{\infty} r P(r) d r=\int_{0}^{\infty} \frac{4 r^{3}}{a_{o}^{3}} e^{-2 r / a_{o}} d r=\frac{4}{a_{o}^{3}} \frac{3!}{\left(2 / a_{o}\right)^{4}}=\frac{24}{a_{o}^{3}} \frac{a_{o}^{4}}{16}=\frac{3}{2} a_{o} \tag{20}
\end{equation*}
$$

Here we used the given integral for $n=3$.
4. How many different photons can be emitted by hydrogen atoms that undergo transitions to the ground state from the $n=5$ state? Enumerate their energies. (Hint: draw an energy level diagram, and remember that the level spacing is not equal. Answer: 10.)

Solution: All states from $n=5$ to $n=1$ have different energies, and their spacing is not equal. Thus, we have the following possible transitions to the ground state:

$$
\begin{aligned}
& 5 \rightarrow 1 \\
& 5 \rightarrow 4,4 \rightarrow 1 \\
& 5 \rightarrow 4,4 \rightarrow 3,3 \rightarrow 1 \\
& 5 \rightarrow 4,4 \rightarrow 3,3 \rightarrow 2,2 \rightarrow 1 \\
& 5 \rightarrow 4,4 \rightarrow 2,2 \rightarrow 1 \\
& 5 \rightarrow 3,3 \rightarrow 1 \\
& 5 \rightarrow 3,3 \rightarrow 2,2 \rightarrow 1 \\
& 5 \rightarrow 2,2 \rightarrow 1
\end{aligned}
$$

The different photons that can be emitted correspond to the unique level transitions above:

$$
\begin{aligned}
& 5 \rightarrow 4,5 \rightarrow 3,5 \rightarrow 2,5 \rightarrow 1 \\
& 4 \rightarrow 3,4 \rightarrow 2,4 \rightarrow 1 \\
& 3 \rightarrow 2,3 \rightarrow 1 \\
& 2 \rightarrow 1
\end{aligned}
$$

Thus, there are 10 possible transitions, and the energy differences are calculated according to the Bohr model

$$
\begin{equation*}
\Delta \mathrm{E}_{\mathrm{nn}^{\prime}}=-13.6 \mathrm{eV}\left(\frac{1}{\mathrm{n}^{2}}-\frac{1}{\mathrm{n}^{\prime 2}}\right) \tag{21}
\end{equation*}
$$

where n and n^{\prime} are the numbers of the initial and final states, respectively.
5. Electrons of energy 12.2 eV are fired at hydrogen atoms in a gas discharge tube. Determine the wavelengths of the lines that can be emitted by the hydrogen. Hint: to what state can the hydrogen atom be excited, given an excess energy of 12.2 eV above its ground state? (Answer: $656.3,121.5,102.6 \mathrm{~nm})$

Solution: If the hydrogen atom is in its ground state, it has an energy of -13.6 eV . Giving it another 12.2 eV means it has an energy of -1.4 eV , and the maximum state it can be excited to is thus

$$
\begin{equation*}
-1.4 \mathrm{eV}=\frac{-13.6 \mathrm{eV}}{\mathrm{n}^{2}} \tag{22}
\end{equation*}
$$

This gives $n=3.1$, so the atom may be excited to the $n=3$ state (the $n=4$ state has an energy of
-0.85 eV , and cannot be reached). The hydrogen atom may then relax to the ground state from the third state by the following paths:

$$
\begin{aligned}
& 3 \rightarrow 1 \\
& 3 \rightarrow 2,2 \rightarrow 1
\end{aligned}
$$

This gives us three possible photon energies:

$$
\begin{aligned}
& E_{3}-E_{1}=-13.6 \mathrm{eV}\left(\frac{1}{3^{2}}-\frac{1}{1^{2}}\right)=12.09 \mathrm{eV} \\
& E_{3}-E_{2}=-13.6 \mathrm{eV}\left(\frac{1}{3^{2}}-\frac{1}{2^{2}}\right)=1.88 \mathrm{eV} \\
& E_{2}-E_{1}=-13.6 \mathrm{eV}\left(\frac{1}{2^{2}}-\frac{1}{1^{2}}\right)=10.2 \mathrm{eV}
\end{aligned}
$$

The photon wavelengths are then given by $\lambda=h c / \Delta \mathrm{E} \approx 1240 \mathrm{eV} \cdot \mathrm{nm} / \Delta \mathrm{E}$ for

$$
\begin{equation*}
\lambda=\{659.6,121.5,102.6\} \mathrm{nm} \tag{23}
\end{equation*}
$$

6. Determine the correction to the wavelength of an emitted photon when the recoil kinetic energy of the hydrogen nucleus is taken into account. (Hint: use conservation of energy and momentum. Fractional change $\sim 10^{-9}$)

Solution: Assuming that the atom is initially at rest, conservation of energy gives

$$
\begin{equation*}
E_{i}=E_{f}+E_{\gamma}+K \tag{24}
\end{equation*}
$$

Here E_{i} is the initial and E_{f} the final energy of the atom, E_{γ} is the photon energy, and K the recoil kinetic energy of the nucleus. Neglecting the nuclear recoil correction, this would simply give $E_{f}-E_{i}=E_{\gamma}=\frac{h c}{\lambda_{\mathrm{o}}}$ as we are used to, giving a photon wavelength λ_{o}. Rearranging,

$$
\begin{equation*}
\frac{E_{i}-E_{f}}{h c}-\frac{E_{\gamma}}{h c}=\frac{K}{h c} \tag{25}
\end{equation*}
$$

The first term on the left would be the wavelength neglecting the nuclear recoil correction, $1 / \lambda_{\mathrm{o}}$, while the second gives the actual corrected wavelength $1 / \lambda$:

$$
\begin{equation*}
\frac{1}{\lambda_{\mathrm{o}}}-\frac{1}{\lambda}=\frac{\mathrm{K}}{\mathrm{hc}} \tag{26}
\end{equation*}
$$

In terms of a fractional correction,

$$
\begin{equation*}
\frac{\lambda-\lambda_{\mathrm{o}}}{\lambda_{\mathrm{o}}}=\frac{\lambda \mathrm{K}}{\mathrm{hc}} \tag{27}
\end{equation*}
$$

The recoil momentum of the nucleus will be $p=\sqrt{2 M K}$, where M is the nuclear mass Conservation of momentum between the recoiling nucleus and the exiting photon gives

$$
\begin{equation*}
0=\sqrt{2 M K}-\frac{h}{\lambda} \quad \Longrightarrow \quad K=\frac{h^{2}}{2 M \lambda^{2}} \tag{28}
\end{equation*}
$$

Thus,

$$
\begin{equation*}
\frac{\lambda-\lambda_{\mathrm{o}}}{\lambda_{\mathrm{o}}}=\frac{\lambda\left(\mathrm{h}^{2} / 2 \mathrm{M} \lambda^{2}\right)}{\mathrm{hc}}=\frac{\mathrm{hc}}{2\left(\mathrm{Mc}^{2}\right) \lambda} \approx \frac{6.6 \times 10^{-7} \mathrm{~nm}}{\lambda} \tag{29}
\end{equation*}
$$

For hydrogen, the wavelengths of the lowest transitions are on the order of $10^{2} \mathrm{~nm}$, so the fractional change is on the order of 10^{-9}, and thus utterly negligible.
7. Show that whenever a solution $\Psi(x, t)$ of the time-dependent Schrödinger equation separates into a product $\Psi(x, t)=F(x) \cdot G(t)$ then $F(x)$ must satisfy the corresponding time-independent Schrödinger equation and $G(t)$ must be proportional to $e^{-i E t / \hbar}$.

Solution: The time-dependent Schrödinger equation reads

$$
\begin{equation*}
i \hbar \frac{\partial \Psi}{\partial t}=\hat{H} \Psi \tag{30}
\end{equation*}
$$

Where \hat{H} represents the kinetic plus potential energy,

$$
\begin{equation*}
\hat{H}=-\frac{\hbar^{2}}{2 m} \frac{\mathrm{~d}^{2}}{d x^{2}}+V(x) \tag{31}
\end{equation*}
$$

Substituting our separated solution, and noting that any spatial derivative of $G(t)$ is zero,

$$
\begin{equation*}
\left(\frac{-\hbar^{2}}{2 m} \frac{\partial^{2} F(x)}{\partial x^{2}}+V(x) F(x)\right) G(t)=i \hbar F(x) \frac{\partial G(t)}{\partial t} \tag{32}
\end{equation*}
$$

Separate everything that depends on x to the left, and everything that depends on t to the right:

$$
\begin{equation*}
\frac{\frac{-\hbar^{2}}{2 m} \frac{\partial^{2} F(x)}{\partial x^{2}}+V(x) F(x)}{F(x)}=\frac{i \hbar \frac{\partial G(t)}{\partial t}}{G(t)} \tag{33}
\end{equation*}
$$

[^0]If both sides are equal, then they must both be equal to the same constant value, which we will denote as E. Thus,

$$
\begin{equation*}
\frac{-\hbar^{2}}{2 m} \frac{\partial^{2} F(x)}{\partial x^{2}}+V(x) F(x)=E F(x) \tag{34}
\end{equation*}
$$

Thus, $F(x)$ obeys the time-independent Schrödinger equation. Further,

$$
\begin{equation*}
i \hbar \frac{\partial G(t)}{\partial t}=E G(t) \tag{35}
\end{equation*}
$$

The latter equation can be re-written

$$
\begin{equation*}
\frac{\partial G(t)}{\partial t}=\frac{E}{i \hbar} G(t)=-\frac{i E}{\hbar} G(t) \tag{36}
\end{equation*}
$$

which has the general solution ${ }^{\text {[ii] }}$

$$
\begin{equation*}
G(t)=C e^{-i E t / \hbar} \tag{37}
\end{equation*}
$$

NB: this is probably not something I would ask on the exam, as it is more math than physics.
8. A particle is in a stationary state in the potential $\mathrm{V}(\mathrm{x})$. The potential function is now increased over all x by a constant value V_{o}. What is the effect on the quantized energy? Show that the spatial wave function of the particle remains unchanged. (Answer: all energies raised by V_{o}.)

Solution: Changing the overall value of the potential by V_{o} is equivalent to changing the zero of potential energy by V_{o}. Since we can only measure differences in potential energy, all this does is globally shift our energy readings by V_{o}, and the measured energies must also then increase by V_{o}. The time-independent Schrödinger equation in 1D reads

$$
\begin{equation*}
E \psi=\frac{-\hbar^{2}}{2 m} \frac{\partial^{2} \psi}{\partial x^{2}}+V(x) \psi \tag{38}
\end{equation*}
$$

Adding V_{o} to the potential energy gives

$$
\begin{align*}
\mathrm{E} \psi & =\frac{-\hbar^{2}}{2 m} \frac{\partial^{2} \psi}{\partial x^{2}}+\left(\mathrm{V}(\mathrm{x})+\mathrm{V}_{\mathrm{o}}\right) \psi \tag{39}\\
\left(\mathrm{E}-\mathrm{V}_{\mathrm{o}}\right) \psi & =\frac{-\hbar^{2}}{2 \mathrm{~m}} \frac{\partial^{2} \psi}{\partial x^{2}}+\mathrm{V}(\mathrm{x}) \psi \tag{40}
\end{align*}
$$

[^1]Thus, the same time-independent Schrödinger equation is obeyed, with the energies are shifted upward by V_{o}. The spatial part of the wave function remains unchanged, since $\frac{-\hbar^{2}}{2 m} \frac{\partial^{2} \psi}{\partial x^{2}}+V(x) \psi$ is still just equal to a constant times ψ.
9. An experimenter asks for funds from a foundation to observe visually through a microscope the quantum behavior of a small harmonic oscillator. According to his proposal, the oscillator consists of an object $10^{-6} \mathrm{~m}$ in diameter and estimated mass of $10^{-15} \mathrm{~kg}$. It vibrates on the end of a thin fiber with a maximum amplitude of $10^{-5} \mathrm{~m}$ and frequency 1000 Hz . You are the referee for the proposal.
(a) What is the approximate quantum number for the system in the state described? (About 3×10^{12}.)
(b) What would its energy be in electron volts if it were in its lowest energy state? Compare with the average thermal energy at room temperature, $\sim 1 / 40 \mathrm{eV}$. (About $2 \times 10^{-12} \mathrm{eV}$.)
(c) What would its classical amplitude of vibration be if it were in its lowest energy state? Compare with the wavelength of visible light, about 500 nm , with which it is presumably observed. (About $4 \times 10^{-12} \mathrm{~m}$.)
(d) Would you, as a referee of this proposal, recommend award of a grant to carry out this research? (No!)

Solution: The energy of a quantum simple harmonic oscillator can be written in terms of its frequency f, its principle quantum number \mathfrak{n}, and Planck's constant h :

$$
\begin{equation*}
E=\left(n+\frac{1}{2}\right) h f \tag{42}
\end{equation*}
$$

If the object is a mechanical oscillator, then its vibrational energy must also be related to its amplitude of vibration A :

$$
\begin{equation*}
E=\frac{1}{2} k A^{2} \quad \text { with } \quad 2 \pi f=\sqrt{\frac{k}{m}} \tag{43}
\end{equation*}
$$

here k is the effective spring constant and m the mass of the oscillator. Combining the last two expressions, and using the quantities given, we have

$$
\begin{align*}
\left(n+\frac{1}{2}\right) h f & =2 \pi^{2} \mathrm{mf}^{2} \mathrm{~A}^{2} \tag{44}\\
\mathrm{n} & =\frac{2 \pi^{2} m}{\mathrm{~h}} \mathrm{f} \mathrm{~A}^{2}-\frac{1}{2} \approx \frac{2 \pi^{2} m}{\mathrm{~h}} \mathrm{f} A^{2} \approx 3 \times 10^{12} \tag{45}
\end{align*}
$$

The system is in a very high quantum state, far too high to expect to observe any discretization of vibrational modes - this would require a precision of ~ 1 part in 10^{12} in frequency measurement. Its
energy in electron volts for the lowest state, $n=0$, may then be calculated from either expression:

$$
\begin{equation*}
\mathrm{E}_{0}=\left(0+\frac{1}{2}\right) \mathrm{hf} \approx 3 \times 10^{-31} \mathrm{~J} \approx 2 \times 10^{-12} \mathrm{eV} \tag{46}
\end{equation*}
$$

Clearly, the thermal energy at room temperature will induce an overwhelming random vibration. The amplitude of vibration can be determined by inverting the expression for energy above:

$$
\begin{equation*}
A=\frac{1}{\pi f} \sqrt{\frac{E}{2 \mathrm{~m}}} \approx 4 \times 10^{-12} \mathrm{~m}=4 \times 10^{-3} \mathrm{~nm} \tag{47}
\end{equation*}
$$

This is roughly five orders of magnitude smaller than the wavelength of light, definitively precluding any optical observation. Very hard X-rays would be required, and at a wavelength of $10^{-12} \mathrm{~m}$, the photon energy would be about 1 MeV , more than sufficient to disturb the oscillator. We cannot recommend funding of this project!
10. The molecular bonding in the compound NaCl is predominantly ionic, and to a good approximation we can consider a sodium chloride molecule as consisting of two units - an Na^{+}ion and a Cl^{-}ion - bound together. Assuming an electrostatic attraction and a power-law repulsion between the ions, their potential energy as a function of ion spacing has the form

$$
\begin{equation*}
V(r)=-\frac{k e^{2}}{r}+\frac{A}{r^{n}} \tag{48}
\end{equation*}
$$

(a) Find the equilibrium spacing r_{0}.
(b) Find the potential energy at this separation, $V_{\text {min }}$.
(c) Find the effective "spring constant" for the molecule, assuming small deviations from r_{0}. One way to do this is to find the second derivative of $V(r)$ at $r=r_{o} .\left[(n-1) k e^{2} / r_{o}^{3}\right]$

Solution: Equilibrium spacing occurs when $\mathrm{dV} / \mathrm{dr}=0$:

$$
\begin{align*}
\left.\frac{d V}{d r}\right|_{r_{o}} & =\frac{k e^{2}}{r_{o}^{2}}-\frac{n A}{r_{o}^{n+1}}=0 \tag{49}\\
k e^{2} & =\frac{n A}{r_{o}^{n-1}} \tag{50}\\
r_{o} & =\left(\frac{n A}{k e^{2}}\right)^{1 /(n-1)} \tag{51}
\end{align*}
$$

At this separation, we have

$$
\begin{align*}
V\left(r_{o}\right) & =-\frac{k e^{2}\left(k e^{2}\right)^{1 /(n-1)}}{(n A)^{1 /(n-1)}}+\frac{A\left(k e^{2}\right)^{n /(n-1)}}{(n A)^{n /(n-1)}}=-\frac{\left(k e^{2}\right)^{n /(n-1)}}{(n A)^{1 /(n-1)}}+A\left(\frac{k e^{2}}{n A}\right)^{n /(n-1)} \tag{52}\\
& =\left(k e^{2}\right)^{n /(n-1)}\left(\frac{1}{(n A)^{1 /(n-1)}}+\frac{A}{(n A)^{n /(n-1)}}\right) \tag{53}\\
& =\left(k e^{2}\right)^{n /(n-1)}\left(\frac{1}{(n A)^{1 /(n-1)}}+\frac{1}{n(n A)^{1 /(n-1)}}\right)=\left(\frac{k^{n} e^{2 n}}{n A}\right)^{1 /(n-1)}\left(1+\frac{1}{n}\right) \tag{54}
\end{align*}
$$

The spring constant can be found by approximating $d^{2} V / d r^{2}$ as constant near r_{o} :

$$
\begin{equation*}
\left.\frac{d^{2} V}{d r^{2}}\right|_{r_{0}}=-\frac{2 k e^{2}}{r_{o}^{3}}+\frac{n(n+1) A}{r_{o}^{n+2}}=-2 k e^{2}\left(\frac{k e^{2}}{n A}\right)^{3 /(n-1)}+n(n+1) A\left(\frac{k e^{2}}{n A}\right)^{(n+2) /(n-1)} \tag{55}
\end{equation*}
$$

[^0]: ${ }^{i}$ Since $K=p^{2} / 2 \mathrm{~m}$.

[^1]: ${ }^{\text {ii }}$ Recall that if $-a \frac{d y}{d x}=y$, the general solution is $y=C e^{-t / a}$, where C is a constant.

