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Exam 2 Sample Problems

1. The wavefunction of a particle in a double slit experiment with slit spacing d and slit width
w<d (w,d both positive quantities) in the plane of the slits is described by

ψ(x) =


C −d2 − w

2 6 x 6 −d2 + w
2 (slit a)

C d
2 − w

2 6 x 6 d
2 + w

2 (slit b)

0 otherwise

(1)

(a) Determine the normalization constant C.
(b) Determine 〈x〉 and 〈x2〉 in the limit w�d, i.e., ignore any terms of order w/d and higher in
the end result.
(c) Again for w�d, find the uncertainty in position ∆x=

√
〈x2〉− 〈x〉2.

Solution: We can normalize the wavefunction by integrating its square over all space and setting
the result equal to 1. This enforces that the particle has unit probability of being somewhere.

∫
|ψ(x)|2 dx =

−d/2+w/2∫
−d/2−w/2

C2 dx+

d/2+w/2∫
d/2−w/2

C2 dx = C2w+ C2w = 2wC2 = 1 (2)

=⇒ C =
1√
2w

(3)

Finding 〈x〉 is not much harder, in principle.

〈x〉 =

∫
x|ψ(x)|2 dx =

−d/2+w/2∫
−d/2−w/2

xC2 dx+
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1
2
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−
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−
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4

]
+

1
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[
d2

4
+
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2
+
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4
−
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4
+
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2
−
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4

]
=

1
2
C2 [−dw] +

1
2
C2 [dw] = 0 (4)



Of course, since the integrand is an odd function of x and the integration limits are symmetric, we
could have seen that 〈x〉 must be zero just based on symmetry. Finding 〈x2〉 we have no such trick
to make use of . . .

〈x2〉 =

∫
x2|ψ(x)|2 dx =

−d/2+w/2∫
−d/2−w/2

x2C2 dx+

d/2+w/2∫
d/2−w/2

x2C2 dx =
1
3
C2x3

∣∣∣∣−d/2+w/2

−d/2−w/2

+
1
3
C2x3

∣∣∣∣d/2+w/2

d/2−w/2

=
1
3
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w
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−
d
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w

2
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+
1
3
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d
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(
d
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(5)

At this point, we have a great many terms to evaluate. However, since we need only terms of first
order in w/d, we can divide out a factor d3/23 and simplify by taking only the first terms in the
expansion:

〈x2〉 =
1
24
C2d3

[(
−1 +

w

d

)3
+
(
1 +

w

d

)3
+
(
1 +

w

d

)3
−
(
1 −

w

d

)3
]

=
1
12
C2d3
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1 +

w

d

)3
−
(
1 −

w

d

)3
]
≈ 1

12
C2d3

[
1 + 3

w

d
− 1 + 3

w

d

]
=

1
2
C2d2w =

1
2

(
1

2w

)
d2w =

1
4
d2 (6)

Finally,

∆x =
√
〈x2〉− 〈x〉2 =

√
1
4
d2 − 0 = ±1

2
d (7)

2. The state of a free particle is described by the following wave function

ψ(x) =


0 x < −b

A −b 6 x 6 3b

0 x > 3b

(8)

(a) Determine the normalization constant A.
(b) What is the probability of finding the particle in the interval [0,b]?
(c) Determine 〈x〉 and 〈x2〉 for this state.
(d) Find the uncertainty in position ∆x=

√
〈x2〉− 〈x〉2.

Solution: As above, we can normalize the wavefunction by integrating its square over all space.



Conveniently, the wavefunction is zero except over the interval [−b, 3b]

∫
|ψ(x)|2 dx =

3b∫
−b

A2 dx = 4bA2 = 1 =⇒ A =
1

2
√
b

(9)

The probability of finding the particle in [0,b] means integrating the probability density, |ψ|2 over
that interval:

P(x ∈ [0,b]) =

b∫
0

A2 dx =

b∫
0

1
4b
dx =

1
4

(10)

Finding 〈x〉 proceeds as above, though now the integration interval is asymmetric, and we expect
a nonzero value:

〈x〉 =

3b∫
−b

x

4b
dx =

1
4b

[
1
2
x2

]3b

−b

=
1
8b
(
9b2 − b2

)
= b (11)

Similarly,

〈x2〉 =

3b∫
−b

x2

4b
dx =

1
12b

[
x3
]3b
−b

=
1

12b
[
27b3 + b3

]
=

7
3
b2 (12)

Thus,

∆x =
√
〈x2〉− 〈x〉2 =

√
7
3
b2 − b2 = ± 2b√

3
(13)

3. The hydrogen 1s wavefunction is

ψ1s =
1

√
πa

3/2
o

e−r/ao (14)

(a) Find the most probable distance from the origin to find an electron. (ao)
(Hint: maximize P(r)=4πr2|ψ|2.)

(b) Find the expected distance from the origin, 〈r〉. (3
2ao) Note



∫∞
0
xne−ax dx =

n!
an+1

Solution: The probability of finding an electron at radius r in the interval [r, r+ dr] is

P(r) = 4πr2|ψ|2 =
4r2

a3
o

e−2r/ao (15)

Thus, the maximum probability occurs when

dP

dr
= 0 =

8r
a3
o

e−2r/ao −
8r2

a4
o

e−2r/ao (16)

0 =
8r2

a3
o

−
8r2

a4
o

(17)

0 = 1 −
r

ao
(18)

r = ao (19)

The expected value of r is found via

〈r〉 =

∞∫
0

rP(r)dr =

∞∫
0

4r3

a3
o

e−2r/ao dr =
4
a3
o

3!
(2/ao)

4 =
24
a3
o

a4
o

16
=

3
2
ao (20)

Here we used the given integral for n=3.

4. How many different photons can be emitted by hydrogen atoms that undergo transitions to the
ground state from the n=5 state? Enumerate their energies. (Hint: draw an energy level diagram,
and remember that the level spacing is not equal. Answer: 10.)

Solution: All states from n= 5 to n= 1 have different energies, and their spacing is not equal.
Thus, we have the following possible transitions to the ground state:



5 → 1

5 → 4, 4 → 1

5 → 4, 4 → 3, 3 → 1

5 → 4, 4 → 3, 3 → 2, 2 → 1

5 → 4, 4 → 2, 2 → 1

5 → 3, 3 → 1

5 → 3, 3 → 2, 2 → 1

5 → 2, 2 → 1

The different photons that can be emitted correspond to the unique level transitions above:

5 → 4, 5 → 3, 5 → 2, 5 → 1

4 → 3, 4 → 2, 4 → 1

3 → 2, 3 → 1

2 → 1

Thus, there are 10 possible transitions, and the energy differences are calculated according to the
Bohr model

∆Enn′ = −13.6 eV
(

1
n2

−
1
n′2

)
(21)

where n and n′ are the numbers of the initial and final states, respectively.

5. Electrons of energy 12.2 eV are fired at hydrogen atoms in a gas discharge tube. Determine
the wavelengths of the lines that can be emitted by the hydrogen. Hint: to what state can the
hydrogen atom be excited, given an excess energy of 12.2 eV above its ground state? (Answer:
656.3, 121.5, 102.6 nm)

Solution: If the hydrogen atom is in its ground state, it has an energy of −13.6 eV. Giving it
another 12.2 eV means it has an energy of −1.4 eV, and the maximum state it can be excited to is
thus

−1.4 eV =
−13.6 eV
n2

(22)

This gives n=3.1, so the atom may be excited to the n=3 state (the n=4 state has an energy of



−0.85 eV, and cannot be reached). The hydrogen atom may then relax to the ground state from
the third state by the following paths:

3 → 1

3 → 2, 2 → 1

This gives us three possible photon energies:

E3 − E1 = −13.6 eV
(

1
32

−
1
12

)
= 12.09 eV

E3 − E2 = −13.6 eV
(

1
32

−
1
22

)
= 1.88 eV

E2 − E1 = −13.6 eV
(

1
22

−
1
12

)
= 10.2 eV

The photon wavelengths are then given by λ=hc/∆E≈1240 eV · nm/∆E for

λ = {659.6, 121.5, 102.6} nm (23)

6. Determine the correction to the wavelength of an emitted photon when the recoil kinetic energy
of the hydrogen nucleus is taken into account. (Hint: use conservation of energy and momentum.
Fractional change ∼ 10−9)

Solution: Assuming that the atom is initially at rest, conservation of energy gives

Ei = Ef + Eγ + K (24)

Here Ei is the initial and Ef the final energy of the atom, Eγ is the photon energy, and K the
recoil kinetic energy of the nucleus. Neglecting the nuclear recoil correction, this would simply give
Ef−Ei=Eγ= hc

λo
as we are used to, giving a photon wavelength λo. Rearranging,

Ei − Ef
hc

−
Eγ

hc
=
K

hc
(25)

The first term on the left would be the wavelength neglecting the nuclear recoil correction, 1/λo,
while the second gives the actual corrected wavelength 1/λ:

1
λo

−
1
λ

=
K

hc
(26)



In terms of a fractional correction,

λ− λo

λo
=
λK

hc
(27)

The recoil momentum of the nucleus will be p=
√

2MK, whereM is the nuclear mass.i Conservation
of momentum between the recoiling nucleus and the exiting photon gives

0 =
√

2MK−
h

λ
=⇒ K =

h2

2Mλ2
(28)

Thus,

λ− λo

λo
=
λ
(
h2/2Mλ2

)
hc

=
hc

2 (Mc2) λ
≈ 6.6× 10−7 nm

λ
(29)

For hydrogen, the wavelengths of the lowest transitions are on the order of 102 nm, so the fractional
change is on the order of 10−9, and thus utterly negligible.

7. Show that whenever a solution Ψ(x, t) of the time-dependent Schrödinger equation separates
into a product Ψ(x, t) = F(x) · G(t) then F(x) must satisfy the corresponding time-independent
Schrödinger equation and G(t) must be proportional to e−iEt/ h.

Solution: The time-dependent Schrödinger equation reads

i h
∂Ψ

∂t
= ĤΨ (30)

Where Ĥ represents the kinetic plus potential energy,

Ĥ = −
 h2

2m
d2

dx2
+ V(x) (31)

Substituting our separated solution, and noting that any spatial derivative of G(t) is zero,(
− h2

2m
∂2F(x)

∂x2
+ V(x)F(x)

)
G(t) = i hF(x)

∂G(t)

∂t
(32)

Separate everything that depends on x to the left, and everything that depends on t to the right:

− h2

2m
∂2F(x)
∂x2 + V(x)F(x)

F(x)
=
i h∂G(t)

∂t

G(t)
(33)

iSince K=p2/2m.



If both sides are equal, then they must both be equal to the same constant value, which we will
denote as E. Thus,

− h2

2m
∂2F(x)

∂x2
+ V(x)F(x) = EF(x) (34)

Thus, F(x) obeys the time-independent Schrödinger equation. Further,

i h
∂G(t)

∂t
= EG(t) (35)

The latter equation can be re-written

∂G(t)

∂t
=
E

i h
G(t) = −

iE

 h
G(t) (36)

which has the general solutionii

G(t) = Ce−iEt/ h (37)

NB: this is probably not something I would ask on the exam, as it is more math than physics.

8. A particle is in a stationary state in the potential V(x). The potential function is now increased
over all x by a constant value Vo. What is the effect on the quantized energy? Show that the
spatial wave function of the particle remains unchanged. (Answer: all energies raised by Vo.)

Solution: Changing the overall value of the potential by Vo is equivalent to changing the zero of
potential energy by Vo. Since we can only measure differences in potential energy, all this does is
globally shift our energy readings by Vo, and the measured energies must also then increase by Vo.
The time-independent Schrödinger equation in 1D reads

Eψ =
− h2

2m
∂2ψ

∂x2
+ V(x)ψ (38)

Adding Vo to the potential energy gives

Eψ =
− h2

2m
∂2ψ

∂x2
+ (V(x) + Vo)ψ (39)

(E− Vo)ψ =
− h2

2m
∂2ψ

∂x2
+ V(x)ψ (40)

(41)

iiRecall that if −ady
dx

=y, the general solution is y=Ce−t/a, where C is a constant.



Thus, the same time-independent Schrödinger equation is obeyed, with the energies are shifted
upward by Vo. The spatial part of the wave function remains unchanged, since − h2

2m
∂2ψ
∂x2 + V(x)ψ

is still just equal to a constant times ψ.

9. An experimenter asks for funds from a foundation to observe visually through a microscope the
quantum behavior of a small harmonic oscillator. According to his proposal, the oscillator consists
of an object 10−6 m in diameter and estimated mass of 10−15 kg. It vibrates on the end of a thin
fiber with a maximum amplitude of 10−5 m and frequency 1000 Hz. You are the referee for the
proposal.

(a) What is the approximate quantum number for the system in the state described? (About
3× 1012.)
(b) What would its energy be in electron volts if it were in its lowest energy state? Compare with
the average thermal energy at room temperature, ∼1/40 eV. (About 2× 10−12 eV.)
(c) What would its classical amplitude of vibration be if it were in its lowest energy state? Compare
with the wavelength of visible light, about 500 nm, with which it is presumably observed. (About
4× 10−12 m.)
(d) Would you, as a referee of this proposal, recommend award of a grant to carry out this research?
(No!)

Solution: The energy of a quantum simple harmonic oscillator can be written in terms of its
frequency f, its principle quantum number n, and Planck’s constant h:

E =

(
n+

1
2

)
hf (42)

If the object is a mechanical oscillator, then its vibrational energy must also be related to its
amplitude of vibration A:

E =
1
2
kA2 with 2πf =

√
k

m
(43)

here k is the effective spring constant and m the mass of the oscillator. Combining the last two
expressions, and using the quantities given, we have(

n+
1
2

)
hf = 2π2mf2A2 (44)

n =
2π2m

h
fA2 −

1
2
≈ 2π2m

h
fA2 ≈ 3× 1012 (45)

The system is in a very high quantum state, far too high to expect to observe any discretization of
vibrational modes – this would require a precision of ∼1 part in 1012 in frequency measurement. Its



energy in electron volts for the lowest state, n=0, may then be calculated from either expression:

E0 =

(
0 +

1
2

)
hf ≈ 3× 10−31 J ≈ 2× 10−12 eV (46)

Clearly, the thermal energy at room temperature will induce an overwhelming random vibration.
The amplitude of vibration can be determined by inverting the expression for energy above:

A =
1
πf

√
E

2m
≈ 4× 10−12 m = 4× 10−3 nm (47)

This is roughly five orders of magnitude smaller than the wavelength of light, definitively precluding
any optical observation. Very hard X-rays would be required, and at a wavelength of 10−12 m, the
photon energy would be about 1 MeV, more than sufficient to disturb the oscillator. We cannot
recommend funding of this project!

10. The molecular bonding in the compound NaCl is predominantly ionic, and to a good approx-
imation we can consider a sodium chloride molecule as consisting of two units – an Na+ ion and a
Cl− ion – bound together. Assuming an electrostatic attraction and a power-law repulsion between
the ions, their potential energy as a function of ion spacing has the form

V(r) = −
ke2

r
+
A

rn
(48)

(a) Find the equilibrium spacing ro.
(b) Find the potential energy at this separation, Vmin.
(c) Find the effective “spring constant” for the molecule, assuming small deviations from ro. One
way to do this is to find the second derivative of V(r) at r=ro. [(n− 1)ke2/r3o]

Solution: Equilibrium spacing occurs when dV/dr=0:

dV

dr

∣∣∣∣
ro

=
ke2

r2o
−
nA

rn+1
o

= 0 (49)

ke2 =
nA

rn−1
o

(50)

ro =

(
nA

ke2

)1/(n−1)

(51)

At this separation, we have



V(ro) = −
ke2

(
ke2
)1/(n−1)

(nA)1/(n−1)
+
A
(
ke2
)n/(n−1)

(nA)n/(n−1)
= −

(
ke2
)n/(n−1)

(nA)1/(n−1)
+A

(
ke2

nA

)n/(n−1)

(52)

=
(
ke2
)n/(n−1)

(
1

(nA)1/(n−1)
+

A

(nA)n/(n−1)

)
(53)

=
(
ke2
)n/(n−1)

(
1

(nA)1/(n−1)
+

1

n (nA)1/(n−1)

)
=

(
kne2n

nA

)1/(n−1)(
1 +

1
n

)
(54)

The spring constant can be found by approximating d2V/dr2 as constant near ro:

d2V

dr2

∣∣∣∣
ro

= −
2ke2

r3o
+
n (n+ 1)A

rn+2
o

= −2ke2
(
ke2

nA

)3/(n−1)

+ n (n+ 1)A

(
ke2

nA

)(n+2)/(n−1)

(55)


