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PH 253 Exam II
Instructions

1. Solve three of the six problems below. All problems have equal weight.
2. Clearly mark your which problems you have chosen.
3. Do your work on separate sheets. Staple them to this exam paper when you are finished.
4. You are allowed 1 sheet of standard 8.5x11 in paper and a calculator.

1. The state of a free particle is described by the following wave function

ψ(x) =


0 x < −b

A −b 6 x 6 2b

0 x > 2b

(1)

(a) Determine the normalization constant A.
(b) What is the probability of finding the particle in the interval [0,b]?
(c) Determine 〈x〉 and 〈x2〉 for this state.
(d) Find the uncertainty in position ∆x=

√
〈x2〉− 〈x〉2.

2. The Schrödinger equation for a simple harmonic oscillator of mass m can be written

− a4d
2ψ

dx2
+ x2ψ =

2E
C
ψ (2)

where a4 =  h2/mC, C is the force constant, and E the energy. i

(a) Below are the wave functions for the first two states; find their energies in terms of  hωo.
(b) Suggest a general formula for energy the nth state. How does it differ from Planck’s hypothesis for
the energy of his oscillators?

ψ0 =

(
1

a
√
π

)1/2

e−x2/2a2

ψ1 =

(
1

2a
√
π

)1/2

2
(x
a

)
e−x2/2a2

To save you some time, we note d
dx(e−x2/2a2

)=− x
a2 e

−x2/2a2 and d2

dx2 (e−x2/2a2
)= x2−a2

a4 e−x2/2a2

3. A phenomenological expression for the potential energy of a bond as a function of spacing is given by

U(r) =
A

rn
−
B

rm
(3)

For a stable bond, m<n. Show that the molecule will break up when the atoms are pulled apart to a
distance

iNote ωo=2πfo=
√
C/m, a=( h/

√
mC)1/2 =

√
 h/mωo.
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rb =

(
n+ 1
m+ 1

)1/(n−m)

ro (4)

where ro is the equilibrium spacing between the atoms. Be sure to note your criteria for breaking used
to derive the above result.

4. (a) Using the Bohr model, what wavelength of photon is emitted when an electron in a hydrogen atom
makes a transition from the 4f to 3d state?
(b) Show that in the presence of a magnetic field, the 4f → 3d transition in hydrogen appears as three
spectral lines. You may ignore spin, and assume only dipole transitions will occur (see formula sheet).

5. By considering the visible spectrum of hydrogen and He+, show how you could determine spectro-
scopically if a sample of hydrogen was contaminated with helium. (Hint: look for differences in the
visible emission lines, λ≈390∼750 nm. A difference of 10 nm is easily measured.)

6. Find the most probable radius and the expected value of the radial position 〈r〉 of an electron in the 2s
state.

ψ2s =
1

4
√

2π

(
1
ao

)3/2(
2 −

r

ao

)
e−r/2ao (5)

where ao is the Bohr radius, a0 = 4πε0 h2

mee2 = 0.529×10−10 m. Make use of the integrals given on the
formula sheet.



Constants:
NA = 6.022× 1023 things/mol

ke ≡ 1/4πεo = 8.98755× 109 N ·m2 ·C−2

εo = 8.85× 10−12 C2/N ·m2

µ0 ≡ 4π× 10−7 T ·m/A

e = 1.60218× 10−19 C

h = 6.6261× 10−34 J · s = 4.1357× 10−15 eV · s

 h =
h

2π
hc = 1239.84eV · nm

kB = 1.38065× 10−23 J · K−1 = 8.6173× 10−5 eV · K−1

c =
1

√
µ0ε0

= 2.99792× 108 m/s

me = 9.10938× 10−31 kg mec
2 = 510.998keV

mp = 1.67262× 10−27 kg mpc
2 = 938.272MeV

mn = 1.67493× 10−27 kg mnc
2 = 939.565MeV

Schrödinger

i h
∂Ψ

∂t
= −

 h2

2m

d2

dx2
Ψ+V(x)Ψ

Eψ = −
 h2

2m

d2

dx2
ψ+V(x)ψ∫∞

−∞ |ψ(x)|2 dx = 1 P(in [x,x+dx]) = |ψ(x)|2 1D∫∞
0

|ψ(r)|2 4πr2 dr = 1 P(in [r, r+dr]) = 4πr2|ψ(r)|2 3D

〈xn〉 =

∫∞
−∞ xnP(x)dx 1D 〈rn〉 =

∫∞
0
rnP(r)dr 3D

∆x =
√
〈x2〉− 〈x〉2

Basic Equations:
~Fnet =m~a Newton’s Second Law

~Fcentr = −
mv2

r
r̂ Centripetal

~F12 = ke
q1q2
r212

r̂12 = q2~E1 ~r12 =~r1 − ~r2

~E1 = ~F12/q2 = ke
q1
r212

r̂12

~FB = q~v × ~B

0 = ax2 + bx2 + c =⇒ x =
−b±

√
b2 − 4ac

2a

Oscillators

E =

(
n+

1

2

)
hf

E =
1

2
kA2 =

1

2
ω2mA2 = 2π2mf2A2

ω = 2πf =
√
k/m

Approximations, x�1

(1 + x)n ≈ 1 +nx+
1

2
n (n+ 1)x2 tanx ≈ x+

1

3
x3

ex ≈ 1 + x+
1

2
x sinx ≈ x−

1

6
x3 cosx ≈ 1 −

1

2
x2

Misc Quantum
E = hf p = h/λ = E/c λf = c photons

λf − λi =
h

mec
(1 − cosθ)

λ =
h

|~p |
=

h

γmv
≈ h

mv

∆x∆p >
h

4π
∆E∆t >

h

4π

eVstopping = KEelectron = hf−ϕ = hf−W

Bohr
En = −13.6 eV/n2 Hydrogen

En = −13.6 eV
(
Z2/n2

)
Z protons, 1 e−

Ei −Ef = −13.6 eV

(
1

n2
f

−
1

n2
i

)
= hf

L =mvr = n h

v2 =
n2  h2

m2
er2

=
kee

2

mer

Quantum Numbers
l = 0, 1, 2, . . . , (n− 1) L2 = l(l+ 1) h2

ml = −l, (−l+ 1), . . . , l Lz =ml  h

ms = −± 1

2
Sz =ms  h S2 = s(s+ 1) h2

dipole transitions: ∆l = ±1,∆ml = 0,±1,∆ms = 0

µsz = ±µB

~µ s = 2~SµB

Eµ = −~µ · ~B

J2 = j(j+ 1) h2 j = l± 1

2

Jz =mj  h mj = −j, (−j+ 1), . . . , j

Calculus of possible utility: ∫
1

x
dx = lnx+ c∫
udv = uv−

∫
vdu∫

sinaxdx = −
1

a
cosax+C∫

cosaxdx =
1

a
sinax+C

d

dx
tanx = sec2 x =

1

cos2 x∫∞
0
xne−ax dx =

n!

an+1

∞∫
0

x2e−ax2
dx =

1

4

√
π

a3

∞∫
−∞ x

3e−ax2
dx =

∞∫
−∞ xe

−ax2
dx = 0

∞∫
0

x4e−ax2
dx =

3

8

√
π

a5

3


