
PH 253 Exam II Solutions
1. The state of a free particle is described by the following wave function

ψ(x) =


0 x < −b

A −b 6 x 6 2b

0 x > 2b

(1)

(a) Determine the normalization constant A.
(b) What is the probability of finding the particle in the interval [0,b]?
(c) Determine 〈x〉 and 〈x2〉 for this state.
(d) Find the uncertainty in position ∆x=

√
〈x2〉− 〈x〉2.

As above, we can normalize the wavefunction by integrating its square over all space. Conveniently, the
wavefunction is zero except over the interval [−b, 2b]

∫
|ψ(x)|2 dx =

2b∫
−b

A2 dx = 3bA2 = 1 =⇒ A =
1√
3b

(2)

The probability of finding the particle in [0,b] means integrating the probability density, |ψ|2 over that
interval:

P(x ∈ [0,b]) =

b∫
0

A2 dx =

b∫
0

1
3b
dx =

1
3

(3)

Finding 〈x〉 proceeds as above, though now we integrate over all space. As with the normalization integral
above, we need only integrate over the interval where ψ is nonzero:

〈x〉 =

2b∫
−b

x

3b
dx =

1
3b

[
1
2
x2

]2b

−b

=
1
6b

(
4b2 − b2

)
=
b

2
(4)

Similarly,

〈x2〉 =

2b∫
−b

x2

3b
dx =

1
3b

[
1
3
x3

]2b

−b

=
1
9b

[
8b3 + b3

]
= b2 (5)

Thus,

∆x =
√
〈x2〉− 〈x〉2 =

√
b2 −

b2

4
= ±b

√
3

2
(6)



2. The Schrödinger equation for a simple harmonic oscillator of mass m can be written

− a4d
2ψ

dx2
+ x2ψ =

2E
C
ψ (7)

where a4 =  h2/mC, C is the force constant, and E the energy. i

(a) Below are the wave functions for the first two states; find their energies in terms of  hωo.
(b) Suggest a general formula for energy the nth state. How does it differ from Planck’s hypothesis for
the energy of his oscillators?

ψ0 =

(
1

a
√
π

)1/2

e−x2/2a2

ψ1 =

(
1

2a
√
π

)1/2

2
(x
a

)
e−x2/2a2

To save you some time, we note d
dx(e−x2/2a2

)=− x
a2 e

−x2/2a2 and d2

dx2 (e−x2/2a2
)= x2−a2

a4 e−x2/2a2

First, the ground state. Note that we can write the second derivative of the wavefunction in terms of the
original wavefunction, which will save us a considerable amount of time:

d2ψ0

dx2
=
d2

dx2

(
1

a
√
π

)1/2

e−x2/2a2
=

(
1

a
√
π

)1/2 (
x2 − a2

a4

)
e−x2/2a2

=

(
x2 − a2

a4

)
ψ0 (8)

This is the start of one big trick we’ve used again and again: manipulate the differential equation to get a
simpler equation in terms of the original function . . . but we’ll get to that. Plugging this in our Scrödinger
equation, we have:

−a4d
2ψ0

dx2
+ x2ψ0 =

2E
C
ψ0 (9)

−a4

(
x2 − a2

a4

)
ψ0 + x2ψ0 =

2E
C
ψ0 (10)

Keep in mind that what we are trying to do here is find the conditions under which this equation has
a general solution for all x, we are not trying to solve for x! Now, if this equation is to have a general
solution, it must be true for any old value of x. For that to be true, the coefficients of the x2 terms
must be equal, and the constant terms must be equal. Picking out the coefficients, we come up with two
equations:

−x2 + x2 = 0 (11)

a2 =
2E
C

(12)

iNote ωo =2πfo =
√
C/m, a=( h/

√
mC)1/2 =

√
 h/mωo.



The first is of limited utility. The second yields the energy in terms of the force constant:

E =
1
2
Ca2 =

1
2
C

 h√
mC

=
1
2
 h

√
C

m
=

1
2
 hω (13)

For the first excited state, we proceed similarly, though it is substantially more tedious . . . to save a little

clutter, we will define A1 =
(

1
2a
√

π

)1/2
. The derivative calculation proceeds:

ψ1 = 2A1

(x
a

)
e−x2/2a2

(14)

dψ1

dx
= A1

2
a
e−x2/2a2

+A1
2x
a

(
−
x

a2

)
e−x2/2a2

= A1e
−x2/2a2

(
2
a

−
2x2

a3

)
(15)

d2ψ1

dx2
= A1

(
−
x

a2

)
e−x2/2a2

(
2
a

−
2x2

a3

)
+A1e

−x2/2a2

(
−

4x
a3

)
(16)

= 2A1e
−x2/2a2

(
x3

a5
−

3x
a3

)
=

(
x2

a4
−

3
a2

)
2A1

(x
a

)
e−x2/2a2

(17)

=

(
x2

a4
−

3
a2

)
ψ1 (18)

Again, we have the second derivative in terms of the original wavefunction. Substituting into our
Schrödinger equation,

− a4

(
x2

a4
−

3
a2

)
ψ1 + x2ψ1 =

2E
C
ψ1 (19)

And, again, for a general solution for all x, we must have the coefficients of the x2 terms equal to one
another, and the constant terms must also be equal. The coefficients of the quadratic terms leads to
nothing new, as before, but equating the constant terms we have again a condition on energy:

3a2 =
2E
C

(20)

E =
3
2
Ca2 =

3
2
 hω (21)

Consistent with Planck’s hypothesis, the energy difference between the ground and first excited states is
 hω, but the energies themselves come in half-integral amounts rather than integral amounts. As we have
discussed, the energy of the nth state of the harmonic oscillator is En =

(
n+ 1

2

)
 hω, whereas the Planck’

theory predicts En = n hω. The existence of the “zero point”’ energy, a finite energy of 1
2
 hω even in

the n = 0 state, was first noted by Einstein and Stern in 1913 in their explanation of the specific heat
of hydrogen gas at low temperatures. This residual zero point energy persists even as one approaches
absolute zero, and implies that a quantum harmonic oscillator will always be in motion.

3. A phenomenological expression for the potential energy of a bond as a function of spacing is given by

U(r) =
A

rn
−
B

rm
(22)



For a stable bond, m<n. Show that the molecule will break up when the atoms are pulled apart to a
distance

rb =

(
n+ 1
m+ 1

)1/(n−m)

ro (23)

where ro is the equilibrium spacing between the atoms. Be sure to note your criteria for breaking used
to derive the above result.

The condition defining equilibrium is that the force vanishes, or equivalently that the potential energy is
a minimum. If the equilibrium spacing is ro, then

F(ro) = −
dU

dr

∣∣∣∣
ro

=
nA

rn+1
o

−
mB

rm+1
o

(24)

nA

mB
=
rn+1
o

rm+1
o

=
r · rno
r · rmo

= rn−m
o (25)

=⇒ ro =

(
nA

mB

) 1
n−m

(26)

Is this really a minimum? We can check with the second derivative test: if d2U/dr2 =−dF/dr>0 at ro,
have a maximum. We will need dF/dr shortly anyway. You didn’t really need to do this on the test, since
you were given that the stability condition m<n, but it is instructive:

−
dF

dr
=
d2U

dr2
=
n (n+ 1)A

rn+2
−
m (m+ 1)B

rm+2
(27)

d2U

dr2

∣∣∣∣
ro

= n (n+ 1)A

(
mB

nA

) n+2
n−m

−m (m+ 1)B

(
mB

nA

) m+2
n−m

(28)

=

(
mB

nA

)2 [
n (n+ 1)A

(
mB

nA

) n
n−m

−m (m+ 1)B

(
mB

nA

) m
n−m

]
(29)

=

(
mB

nA

)2 (
mB

nA

) n
n−m

[
n (n+ 1)A−m (m+ 1)B

(
mB

nA

)m−n
n−m

]
(30)

=

(
mB

nA

)2 (
mB

nA

) n
n−m

[
n (n+ 1)A−m (m+ 1)B

(
nA

mB

)]
(31)

=

(
mB

nA

) n+2
n−m

[
n (n+ 1)A− n (m+ 1)A

]
(32)

= nA

(
mB

nA

) n+2
n−m

[
n−m

]
> 0 (33)

Clearly, the only way this expression will be positive is if n>m, as previously stated. This means that
the repulsive force has a higher index than the attractive force, and it is of shorter range.

What about breaking the molecule? For distances smaller than ro, the force is repulsive, while for dis-



tances greater than ro it is attractive – in either case, it serves to try and restore the equilibrium position.
However, the competition between the shorter-range repulsive force and longer-range attractive force
means that there is a critical distortion of the molecule for r > ro at which the force is maximum, and
any stronger force (or larger displacement) will separate the constituents to an arbitrarily large distance –
the molecule will be broken.

We have the force between the molecular constituents above:

F(r) =
nA

rn+1
−
mB

rm+1
(34)

so we can readily calculate the maximum force with which the bond may try to restore its equilibrium.
The force above is the force with which the molecule will respond if we push or pull on it.ii The
maximum force will occur when dF/dr=0, at a radius rb

dF

dr
= −

n (n+ 1)A

rn+2
b

+
m (m+ 1)B

rm+2
b

= 0 (35)

n (n+ 1)A

m (m+ 1)B
=
rn+2
b

rm+2
b

= rn−m
b (36)

=⇒ rb =

(
nA

mB

) 1
n−m

(
n+ 1
m+ 1

) 1
n−m

= ro

(
n+ 1
m+ 1

) 1
n−m

(37)

Now, how do we know this is the maximum force, and not a minimum force? We grind through another
derivative . . . we must have d2F/dr2>0 for a maximum:

d2F

dr2
=
n (n+ 1) (n+ 2)A

rn+3
−
m (m+ 1) (m+ 2)B

rm+3
= rn+3

[
n (n+ 1) (n+ 2)A−

m (m+ 1) (m+ 2)B

rm−n

]
d2F

dr2

∣∣∣∣
rb

= rn+3
o

(
n+ 1
m+ 1

) n+3
n−m

[
n (n+ 1) (n+ 2)A−m (m+ 1) (m+ 2)Brn−m

o

(
n+ 1
m+ 1

)n−m
n−m

]

= rn+3
o

(
n+ 1
m+ 1

) n+3
n−m

[
n (n+ 1) (n+ 2)A−m (n+ 1) (m+ 2)Brn−m

o

]
(38)

= rn+3
o

(
n+ 1
m+ 1

) n+3
n−m

[
n (n+ 1) (n+ 2)A−m (n+ 1) (m+ 2)B

(
nA

mB

)]
(39)

= rn+3
o

(
n+ 1
m+ 1

) n+3
n−m

[
n (n+ 1) (n+ 2)A− n (n+ 1) (m+ 2)A

]
(40)

= An (n+ 1) rn+3
o

(
n+ 1
m+ 1

) n+3
n−m

[
n−m

]
> 0 (41)

For the second to last line, we noted that rn−m
o =nA/mB. Once again, if n>m, the second derivative

is positive, and thus the force is maximum at rb. Applying a force sufficiently strong to stretch the bond
iiSee HW9, problem 5.



to a separation rb will serve to break it. Incidentally, the maximum force required is

F(rb) =
nA

rn+1
o

(
n+ 1
m+ 1

) n+1
m−n

−
mB

rm+1
o

(
n+ 1
m+ 1

) m+1
m−n

=

(
n+ 1
m+ 1

) n+1
m−n

[
nA

rn+1
o

−
mB

rm+1
o

(
n+ 1
m+ 1

)]
=

(
n+ 1
m+ 1

) n+1
m−n

[
nA

(
nA

mB

) n+1
m−n

−mB

(
nA

mB

) m+1
m−n

(
n+ 1
m+ 1

)]
(42)

=

(
n+ 1
m+ 1

) n+1
m−n

(
nA

mB

) n+1
m−n

[
nA− nA

(
n+ 1
m+ 1

)]
(43)

= nA

(
n+ 1
m+ 1

) n+1
m−n

(
nA

mB

) n+1
m−n

(
m− n

m+ 1

)
=
nA

rn+1
b

(
m− n

m+ 1

)
(44)

4. (a) Using the Bohr model, what wavelength of photon is emitted when an electron in a hydrogen atom
makes a transition from the 4f to 3d state?
(b) Show that in the presence of a magnetic field, the 4f → 3d transition in hydrogen appears as three
spectral lines. You may ignore spin, and assume only dipole transitions will occur (see formula sheet).

In the Bohr model, energy is independent of the angular momentum state, so we really just want the
energy to go from the n=4 to the n=3 state. Given En =−13.6 eV/n2, the energy difference between
the two states is

E34 = −13.6 eV
(

1
42

−
1
32

)
= 0.661 eV (45)

The corresponding photon wavelength is λ=hc/E34≈1876 nm, in the infrared.

In a magnetic field B, the energy levels for a given l state will split according to their value of ml. If the
original energy of the level is El, then the original level will be split symmetrically into 2l+ 1 sub-levels,
with adjacent levels shifted by µBB:

El,ml
= El +mlµBB (46)

This is shown schematically below for 4f (l= 3) and 3d (l= 2) levels. The l= 3 level has possible ml

values ofml = {−3,−2,−1, 0, 1, 2, 3}, and thus in a magnetic field B what was a single level is now 7 indi-
vidual levels. For l=2, we have ml values of only ml = {−2,−1, 0, 1, 2}, and the original level becomes
5 levels upon applying a magnetic field.

Before calculating anything, we can apply the dipole selection rules, which states that ml can change by
only 0,±1. This means that, for example, from the l= 3, ml = 1 level an electron may “jump” to the
any of the l= 2, ml = {2, 1, 0} levels. On the other hand, from l= 3, ml = 3 level an electron may only
jump to the l=2,ml =2 level. Following these rules, we see from the figure above that there are only 15
possible transitions allowed. Further, noting that the levels are equally spaced, by µBB, we have in fact
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Figure 1: Allowed transitions from l = 3 to l = 2 with a magnetic field applied. Red transitions have an energy difference E34, blue an energy
E34+∆E, and black E34−∆E.

only three different transition energies.

The spacing between two adjacent levels ∆E is the Zeeman energy given above, ∆E= µBB. From our
schematic above, it is clear that the only possible transition energies in a magnetic field are the original
transition energy E34 (no change in ml), or the original transition energy plus or minus ∆E (ml changes
by ±1). Thus, the new transition energies must be

E34 7−→ {E34 − ∆E,E34,E34 + ∆E} = {E34 − µBB,E34,E34 + µBB} (47)

That is, the original transition energy plus two new ones.

5. By considering the visible spectrum of hydrogen and He+, show how you could determine spectro-
scopically if a sample of hydrogen was contaminated with helium. (Hint: look for differences in the
visible emission lines, λ≈390∼750 nm. A difference of 10 nm is easily measured.)

We know the energies in a hydrogen atom are just En = −13.6 eV/n2 for a given level n. For the He+

ion, the only real difference is the extra positive charge in the nucleus. If we have Z positive charges in
the nucleus, the energies become En = −13.6 eVZ2/n2. For Z = 2, we just end up multiplying all the
energies by a factor 4. The questions are: does this lead to any new radiative transitions, are they in the
visible range, and are they well-separated enough? We can just list the energy levels for the two systems
and see what we come up with.

We already know that the visible transitions in Hydrogen occur when excited states relax to the n= 2
level, and that for large n the transitions will probably have an energy too high to be in the visible range.
Thus, we can probably find a new transition for He+ by just considering the first several levels alone.
We see a couple of things already. The n=2 state for He+ happens to accidentally have the same energy



H He+

n En (eV) En (eV)
1 −13.6 −13.6 · 4
2 −13.6 · 1

4 −13.6
3 −13.6 · 1

9 −13.6 · 4
9

4 −13.6 · 1
16 −13.6 · 1

4
5 −13.6 · 1

25 −13.6 · 4
25

as the n= 1 state for H, likewise for the n= 4 state for He+ and the n= 2 state for H. That means that
we can’t just pick transitions at random, some of them will accidentally have the same energy.

However, the n = 3 state for He+ has the curious fraction 4/9 in it, which can’t possibly occur for
H. Transitions into the n = 3 state should yield unique energies. Let’s compute the visible transitions
in hydrogen H, since there are only a few, and see if some He+ transitions stick out in the in-between
wavelengths:

H transition λH (nm) He+ transition λHe+ (nm)
3 → 2 656 4 → 3 469
4 → 2 486 3 → 2 164
5 → 2 434
6 → 2 410

Already with just the 4 → 3 transition in He+, we have an expected emission (or absorption) at 469 nm,
a full 17 nm from the nearest H line, and well in the visible range to boot (a nice pretty blue). Should be
easy to pick out!

6. Find the most probable radius and the expected value of the radial position 〈r〉 of an electron in the 2s
state.

ψ2s =
1

4
√

2π

(
1
ao

)3/2 (
2 −

r

ao

)
e−r/2ao (48)

where ao is the Bohr radius, a0 = 4πε0 h2

mee2 = 0.529×10−10 m. Make use of the integrals given on the
formula sheet.

The most likely distance corresponds to the distance at which the probability of finding the electron
is maximum. This is distinct from the expected value of the radius 〈r〉. The probability of finding an
electron at a distance r in the interval [r, r+dr], in spherical coordinates, is the squared magnitude of the
wavefunction times the volume of a spherical shell of thickness dr and radius r:

P(r)dr = |ψ|2 · 4πr2 dr or P(r) = |ψ|2 · 4πr2 (49)

Given ψ2s above, we have



P(r) =

∣∣∣∣ 1
4
√

2π

(
1
ao

)3/2 (
2 −

r

ao

)
e−r/2ao

∣∣∣∣2 · 4πr2 =
1

8a3
o

(
4r2 −

4r3

ao
+
r4

a2
o

)
e−r/ao (50)

The most probable radius occurs when

dP

dr
= 0 =

(
1

8a3
o

) (
8r−

12r2

ao
+

4r3

a2
o

)
e−r/ao −

(
1

8a4
o

) (
4r2 −

4r3

ao
+
r4

a2
o

)
e−r/a0 (51)

0 =

(
re−r/ao

8a3
o

) (
8 − 12

r

ao
+ 4

r2

a2
o

− 4
r

ao
+ 4

r2

a2
o

−
r3

a3
o

)
(52)

At this point, we can already see the trivial solutions r = 0 and r = ∞, which just like last time are
uninteresting minima of the probability distribution. The interesting solutions are more easily found if
we make a variable substitution x=r/ao:

0 = 8 − 16x+ 8x2 − x3 (53)

One can factor this thing by synthetic division and find the roots to be {2, 3±
√

5}, but it is just as easily
done on your average graphic calculator if you just want the numbers . . .

x =
r

ao
=

{
0, 3±

√
5
}
≈ {0.764, 2.00, 5.24} (54)

Direct substitution, or a quick plot of P(r) verifies that r=0.764ao is a local maximum, r=2.00ao is a
local minimum (zero, actually), and r=5.24ao is the global maximum we seek.

The expected radius is found by integrating xψ2 over all space, as in problem 1, excepting that we are
now in three dimensions:

〈r〉 =

∫∞
0
rP(r)dr =

∫∞
0

r

8a3
o

(
4r2 −

4r3

ao
+
r4

a2
o

)
e−r/ao (55)

=
1

8a3
o

∫∞
0

4r3e−r/ao −
4
ao
r4e−r/ao +

1
a2

o

r5e−r/ao dr (56)

Integrating by terms, and using our handy table of integrals provided,

〈r〉 =
1

8a3
o

(
4

3!
a−4

o
−

4
ao

4!
a−5

o
+

1
a2

o

5!
a−6

o

)
=
ao

8
(24 − 96 + 120) = 6ao (57)


