
PH 253 Final Exam: Solution

1. A particle of mass m is confined to a one-dimensional box of width L, that is, the potential energy of
the particle is infinite everywhere except in the interval 0<x<L, where its potential energy is zero. The
particle is in its ground state. What is the probability that a measurement of the particle’s position will
yield a result in the left quarter of the box? The wavefunction for a particle in a 1D box may be written

ψ(x) = A sinBnx (1)

where A and B are constants you will need to find, and n is an integer. Hint: normalize and apply
boundary conditions.

Solution: UA physics graduate qualifying exam, 2002. Our boundary conditions are that the wavefunction
vanish at the boundaries of the box x=0 and x=L, since the potential is infinite outside of that region.i

This allows us to determine B already:

ψ(0) = A sin 0 = 0 (2)

ψ(L) = A sinBnL = 0 =⇒ BnL = nπ =⇒ B =
π

L
(3)

Thus, ψ(x) = A sin
(
nπx
L

)
. We need only determine the overall constant A, which can be done by

enforcing normalization (i.e., the probability density integrated over all space must give unity). Since the
wavefunction vanishes outside [0,L], we need only integrate over that interval.

1 =

L∫
0

|ψ(x)|2 dx =

L∫
0

A2 sin2
(nπx
L

)
dx =

1
2
A2L =⇒ A =

√
2
L

(4)

Thus,

ψ(x) =

√
2
L

sin
(nπx
L

)
(5)

The probability that the box will be found in the left quarter of the box is determined by integrating the
probability density over that interval:

iWe also require that the derivative of the wavefunction vanish at the boundaries, but this does not help us in the present
case.



P(x ∈ [0,L/4]) =

L/4∫
0

2
L
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L

)
dx =

nπ/4∫
0

2
L

(
L

nπ

) (
1
2

)
(1 − cos 2u) du

(
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nπx

L

)

=
1
nπ

[
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1
2
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0

=
1
nπ

[
nπ

4
−

1
2

]
=

1
4

−
1

2nπ
(6)

For the ground state, n=1, and P= 1
4 − 1

2π≈0.091.

2. The wave function for the ground state of hydrogen (n=1) is

ψ1 =
1√
πa3
o

e−r/ao (7)

where ao is the Bohr radius.

(a) What is the most probable value of r for the ground state?
(b) What is the total probability of finding the electron at a distance greater than this radius?

Solution: The most probable value of r is that which maximizes the probability density,

P(r) = 4πr2|ψ|2 =
4r2

a3
o

e−2r/ao (8)

Maximizing requires setting dP/dR== 0:

dP

dr
=

8r
a3
o

e−2r/ao −
8r2

a4
o

e−2r/ao =
8
a3
o

e−2r/ao

(
r−

r2o
ao

)
= 0 (9)

r = {0,ao,∞} (10)

One can readily verify from a quick plot that r = ao is the maximum, the other two (trivial) extreme
values are minima.

The probability of finding the electron at a radius greater than r=ao is found be integrating the proba-
bility density from ao to ∞:

P(x > ao) =

∞∫
ao

P(r)dr =

∞∫
ao

4r2

a3
o

e−2r/ao dr =
4

a− o3

[
−
aor

2

2
−

2ra2
o

4
−

2a3
o

8

]
e−2r/ao

∣∣∣∣∣
∞
ao

=
5
e2
≈ 0.677 (11)



3. Schrödinger’s equation for a simple harmonic oscillator reads

−
 h2

2m
∂2ψ

∂x2
+

1
2
mω2x2ψ = Eψ (12)

The ground state wave function has the form

ψo = ae−α2x2
(13)

Determine the value of the constant α and the energy of the state.

Solution: We really just need to substitute into Schrödinger’s equation. First, we will need ∂
2ψ
∂x2 :

∂ψ

∂x
= −2α2xae−α2x (14)

∂2ψ

∂x2
= −2α2ae−α2x + 4α4x2ae−α2x = ψo

(
4α4x2 − 2α2

)
(15)

Next, we substitute in to Schrödinger’s equation:

−
 h2

2m
(
4α4x2 − 2α2

)
ψo +

1
2
mω2x2ψo = Eψo (16)

If this equation is to have a general solution, the coefficients of the x2 terms on either side must be the
same, and the constant terms on either side must be equal in sum. The quadratic terms give:

4 h2α4

2m
=

1
2
mω2 =⇒ α =

√
mω

2 h
(17)

Equating the constant terms:

E =
α2 h2

m
=

 h2

m

(mω
2 h

)
=

1
2
 hω (18)

4. By considering the visible spectrum of hydrogen and He+, show how you could determine spectro-
scopically if a sample of hydrogen was contaminated with helium. (Hint: look for differences in the
visible emission lines, λ≈390∼750 nm. A difference of 10 nm is easily measured.)

Solution: Pfeffer & Nir 3.4 We know the energies in a hydrogen atom are just En = −13.6 eV/n2 for a
given level n. For the He+ ion, the only real difference is the extra positive charge in the nucleus. If we



have Z positive charges in the nucleus, the energies become En = −13.6 eVZ2/n2. For Z = 2, we just
end up multiplying all the energies by a factor 4. The questions are: does this lead to any new radiative
transitions, are they in the visible range, and are they well-separated enough? We can just list the energy
levels for the two systems and see what we come up with.

We already know that the visible transitions in Hydrogen occur when excited states relax to the n= 2
level, and that for large n the transitions will probably have an energy too high to be in the visible range.
Thus, we can probably find a new transition for He+ by just considering the first several levels alone.

H He+

n En (eV) En (eV)
1 −13.6 −13.6 · 4
2 −13.6 · 1

4 −13.6
3 −13.6 · 1

9 −13.6 · 4
9

4 −13.6 · 1
16 −13.6 · 1

4
5 −13.6 · 1

25 −13.6 · 4
25

We see a couple of things already. The n=2 state for He+ happens to accidentally have the same energy
as the n= 1 state for H, likewise for the n= 4 state for He+ and the n= 2 state for H. That means that
we can’t just pick transitions at random, some of them will accidentally have the same energy.

However, the n = 3 state for He+ has the curious fraction 4/9 in it, which can’t possibly occur for
H. Transitions into the n = 3 state should yield unique energies. Let’s compute the visible transitions
in hydrogen H, since there are only a few, and see if some He+ transitions stick out in the in-between
wavelengths:

H transition λH (nm) He+ transition λHe+ (nm)
3 → 2 656 4 → 3 469
4 → 2 486 3 → 2 164
5 → 2 434
6 → 2 410

Already with just the 4 → 3 transition in He+, we have an expected emission (or absorption) at 469 nm,
a full 17 nm from the nearest H line, and well in the visible range to boot (a nice pretty blue). Should be
easy to pick out!

5. A meter stick makes an angle of 30◦ with respect to the x′-axis of O′. What must be the value of v if
the meter stick makes an angle of 45◦ with respect to the x-axis of O?

Solution: Gautreau & Savin 4.3 In the primed frame, the meter stick makes an angle of 30◦ with respect
to the x axis, so the projections along the x and y axes are:



L′y = L sin 30 =
1
2
L (19)

L′x = L cos 30 =

√
3

2
L (20)

In the unprimed frame, the projection along the y axis remains unchanged, since there is no relative
motion along that axis. Along the x axis, the projection is shortened by a factor γ due to the relative
motion along that axis at velocity v:

Ly = L′y (21)

Lx = L′x/γ (22)

Since the angle the meter stick makes with respect to the x axis in the unprimed frame is 45◦,

tan 45 = 1 =
Ly

Lx
=

1
2Lγ

L
√

3
2

=
γ√
3

(23)

Thus, γ=
√

3, or vc=
√

2
3≈0.816.

6. A Σ0 particle at rest decays to aΛ0 particle and a photon. Determine the energy of the released photon,
given that the Σ0 has rest energy mΣc2 =1192 MeV and the Λ0 has rest energy mΛ0c2 =1116 MeV.

Solution: Gautreau & Savin 32.7 Conservation of energy and momentum are all that we require. Conser-
vation of energy gives:

mΣc
2 = EΛ + Eγ (24)

Conservation of momentum is simple, since the Σ0 is at rest:

pγ = −pΛ (25)
Eγ

c
= −γmΛvΛ (26)

We can write the Λ0 total energy as

EΛ =
√
p2
Λc

2 +m2
Λc

4 (27)

Substituting pΛ=Eγ/c,



mΣc
2 =

√
p2
Λc

2 +m2
Λc

4 + Eγ (28)

mΣc
2 =

√
E2
gamma +m2

Λc
4 + Eγ (29)

m2
Σc

4 − 2mΣc2Eγ + E2
γ = E2

γ +m2
Λc

4 (30)

2mΣc2Egamma = m2
Σc

4 −m2
Λc

4 (31)

Eγ =

(
mΣc

2
)2

−
(
mΛc

2
)

2mΣc2
≈ 73.6 MeV (32)

7. A plane, 300 MHz electromagnetic wave is incident normally on a surface of area 50 cm2. If the
intensity of the wave is 9× 10−5 W/m2,
(a) Determine the rate at which photons strike the surface.
(b) Determine the force on the surface if it is perfectly reflecting.

Solution: Gautreau & Savin 10.20 The quoted intensity is energy per unit time per unit surface area, and
the product of intensity and surface area gives energy per unit time, or power:

P = IA =
(
9× 105 [W/m2]

) (
5× 10−3 [m2]

)
= 4.5× 10−7 [W] =

∆E

∆t
(33)

The energy per unit time delivered by monochromatic photonsii is just the number of photons per unit
time multiplied by the energy per photon:

P = hf
∆N

∆t
= 1.988× 10−25 [J]

∆N

∆t
(34)

Equating our two expressions for power and solving for the number of photons per unit time,

∆N

∆t
=
IA

hf
=

4.5× 10−7 [J/s]
1.988× 10−25 [J]

= 2.26× 1018 [s−1] (35)

8. A 0.3 MeV X-ray photon makes a “head on” collision with an electron initially at rest. Using con-
servation of energy and momentum, find the recoil velocity of the electron. Check your result with the
Compton formula.

Solution: Gautreau & Savin 12.1 Let E and E′ be the initial and final energies of the photon, respectively.
iiI.e., photons all of the same frequency/wavelength.



Conservation of energy then gives:

E = E′ + (γ− 1)mc2 (36)

For a head-on collision, the photon will recoil in the opposite direction, and the electron along the
photon’s original direction. Conservation of momentum then yields

E

c
= −

E′

c
+ γmv (37)

Given that E, m, and c are known quantities, simultaneous solution of the two equations above to
eliminate E′ gives v=0.65c.

9. (a) How many different photons can be emitted by hydrogen atoms that undergo transitions from the
ground state from the n=4 state? (b) Enumerate their energies, in electron volts.

Solution: One can brute-force this quickly enough to find that there are 6 transitions. One may also solve
the problem for an arbitrary n. More generally, the number of possible transitions is just equal to the
number of ways one can choose 2 numbers from a set of n without worrying about their order (i.e., the
number of combinations choosing 2 elements from a set of n):

(number of different photons) =

(
n

2

)
=

n!
2! (n− 2)!

=
n (n− 1)

2
(38)

This works because the order does not matter: if we have n=4 and pick the pair (3, 2) or (2, 3) we need
only count the first ordering, not the second. Hence, we use a combination rather than a permutation.
Further, you can easily convince yourself that this includes all possible intermediate states, accounting
for multi-step transitions such as 4 → 3 → 1. Given n= 4, we readily find 10 different transitions from
the formula above.

Enumerating, we have the following transitions and photon energies, using En=−13.6 eV/n2:

4 → 3 0.661 eV

4 → 2 2.55 eV

4 → 1 12.76 eV

3 → 2 1.89 eV

3 → 1 12.09 eV

2 → 1 10.2 eV



10. Neglecting spin, in a strong external magnetic field of 5 T, determine the lines resulting from the
2p → 1s transition (λo = 121.0 nm) in hydrogen. Provide a sketch of the energy levels and their ml
values.

Solution: The 2p level has l= {−1, 0, 1}, and the levels of different l will experience a Zeeman splitting
and shift their energies by lµBB. Thus, what is a single energy level in zero magnetic field becomes three
distinct levels in a non-zero magnetic field, with energies

Eo,Eo ± µBB (39)

where Eo = hc/λo. The 1s level has only l = 0, and thus experiences no Zeeman splitting. The new
transitions thus have energies Eo,Eo ± µBB rather than just Eo, so the new wavelengths are

λ =

{
λo,

hc

Eo − µBB
,

hc

Eo + µBB

}
≈ {121.0, 121.003, 120.997} nm (40)

11. (a) For a free relativistic quantum particle moving with speed v, the total energy is E= hf=  hω=√
p2c2 +m2c4 and the momentum is p = h/λ =  hk = γmv. For the quantum wave representing the

particle, the group speed is vg=dω/dk. Prove that the group speed of the wave is the same as the speed
of the particle.

(b) It is convenient to describe the motion of an electron (or a hole) in a band by giving it an effective
mass m∗, defined by

1
m∗ ≡

1
 h2

d2E

dk2
(41)

where k=2π/λ is the wave number. For a free electron (p=  hk), show that m∗=m.

Solution: (a) We can just brute-force this one. Using the energy equation, we can write ω in terms of k:

ω =
1
 h

√
 h2k2c2 +m2c4 (42)

vg =
dω

dk
=

1
 h

1
2

(
2 h2kc2

)
√

 h2k2c2 +m2c4
(43)

=
 hkc2√

 h2k2c2 +m2c4
=

pc2√
p2c2 +m2c4

=

√
p2c4

p2c2 +m2c4
(44)

In the last line, we substituted back in p=  hk. If we use p=γmv, we can reduce this expression to the



desired result:

dω

dk
=

√
p2c4

p2c2 +m2c4
=

√
γ2m2v2c4

γ2m2v2c2 +m2c4
=

√
γ2c2v2

γ2v2 + c2
(45)

=

√√√√√√√√
c2v2

1 − v2/c2

v2

1 − v2/c2
+
c2

(
1 − v2/c2

)
1 − v2/c2

=

√
c2v2

v2 + c2 − v2
= ±v (46)

∴ |vg| = |v| (47)

(b) First, d2E/dk2:

E =
p2

2m
=

 h2k2

2m
(48)

dE

dk
=

 h2k

m
(49)

d2E

dk2
=

 h2

m
(50)

Second, substitution:

1
m∗ ≡

1
 h2

d2E

dk2
=

1
 h2

 h2

m
=

1
m

(51)

12. An interstellar space probe is moving at a constant speed relative to earth of 0.76c toward a distant
planet. Its radioisotope generators have enough energy to keep its data transmitter active continuously
for 15 years, as measured in their own reference frame.

(a) How long do the generators last as measured from earth?
(b) How far is the probe from earth when the generators fail, as measured from earth?
(c) How far is the probe from earth when the generators fail, as measured by its built-in trip odometer?

Solution: Just to be clear, we will label quantities measured in the earth’s reference frame with primes
(′), and quantities without primes are with respect to the probe’s reference frame. The relative velocity
between the earth and the probe is the same from both reference frames, v=v′. From the probe’s (and its
generators’) reference frame, it is the observers on earth that are moving. The observers on earth should
then see a longer time interval compared to the proper time measured on the probe:

∆t′ = γ∆p =
15 yrs√

1 −
(0.76c)2

c2

≈ 23 yrs



According to observers on earth, the generators should fail after a period of ∆t′. Also according to them,
the probe should have traveled a distance d′=v′∆t′ - the earth-bound observers watched the probe travel
for an interval ∆t′ at a constant velocity of v′ in their reference frame:

d′ = v′∆t′ = (23 yrs)
(
0.76× 3× 108 m/s

)
≈ 1.65× 1017 m

Alternatively, we could express the distance in light years - the distance light travels in one year:
d′ = (0.76 light speed) (23 yrs) ≈ 17.5 light-years

Finally, how about the distance traveled according to the probe? That is just the relative velocity multi-
plied by the elapsed time from the probe’s reference frame, i.e., the proper time:

d = v∆t = (15 yrs)
(
3× 108 m/s

)
(0.76) = 1.1× 1017 m = 11 light-years


