University of Alabama
 Department of Physics and Astronomy

Problem Set 4: Mostly Magnetic

Instructions:

1. Answer all questions below. Show your work for full credit.
2. All problems are due Tuesday 24 July 2012 by the end of the day (11:59pm if electronically submitted, by 5 pm as a hard copy)
3. You may collaborate, but everyone must turn in their own work.
4. A uniform magnetic field of magnitude 0.150 T is directed along the positive x axis. A positron (a positively-charged electron) moving at $5.00 \times 10^{6} \mathrm{~m} / \mathrm{s}$ enters the field along a direction that makes an angle of 85° with the x axis. The motion of the particle is expected to be a helix in this case. Calculate the pitch p and radius r of the trajectory.

5. Find the magnetic field at point P for each of current configurations shown below. Hint for a: Magnetic due to the straight portions is zero at P. Hint for b: Two half-infinite wires make one infinite straight wire. Hint c: use superposition and symmetry!

(a)

(b)
6. Find the force on a square loop (side a) placed as shown below, near an infinite straight wire. Both loop and wire carry a steady current I.

7. What is the induced EMF between the ends of the wingtips of a Boeing 737 when it is flying over the magnetic north pole? The internet has most of the numbers you require.
8. Show that, if the condition $R_{1} R_{2}=L / C$ is satisfied by the components of the circuit below, the difference in voltage between points A and B will be zero at any frequency.

