\qquad Date \qquad

PH 102 Quiz 3: Potential and so forth

$$
\begin{gathered}
\Delta V=k_{e} \frac{q}{r} \quad k_{e}=8.9875 \times 10^{9} \frac{\mathrm{~N} \cdot \mathrm{~m}^{2}}{\mathrm{C}^{2}} \quad q \Delta V=P E \quad Q=C \Delta V \quad C=\kappa \epsilon_{0} \frac{A}{d} \quad e=1.6 \times 10^{-19} C \\
C_{\text {eq, parallel }}=C_{1}+C_{2} \quad C_{\text {eq, series }}=\frac{C_{1} C_{2}}{C_{1}+C_{2}} \quad E_{C}=\frac{1}{2} Q \Delta V=\frac{1}{2} C(\Delta V)^{2} \quad-W=\Delta P E=-q E_{x} \Delta x=q \Delta V
\end{gathered}
$$

1. Capacitors connected in parallel must always have the same:
\bigcirc Charge
\otimes Potential difference
\bigcirc Energy stored
\bigcirc None of the above
2. An ideal parallel plate capacitor is completely charged up, and then disconnected from a battery. The plates are then pulled a small difference apart. What happens to the capacitance, C, and charge stored, Q, respectively?
decreases; increasesincreases; decreases
Q decreases; stays the samestays the same; decreases
3. An isolated conductor has a surface electric potential of 10 Volts. An electron on the surface is moved by 0.1 m . How much work must be done to move the charge? Note that e is the charge on an electron.
```
\(\bigcirc 1 e\) Joules
\(\bigcirc 0.1 e\) Joules
○ \(10 e\) Joules
\(\otimes 0\)
```

4. An electron initially at rest is accelerated through a potential difference of 1 V , and gains kinetic energy $K E_{e}$. A proton, also initially at rest, is accelerated through a potential difference of -1 V , and gains kinetic energy $K E_{p}$. Which of the following must be true?$K E_{e}<K E_{p}$
$\otimes K E_{e}=K E_{p}$
$\bigcirc K E_{e}>K E_{p}$not enough information
5. Consider a collection of charges in a given region, and suppose all other charges are distant and have negligible effect. The electric potential is taken to be zero at infinity. If the electric potential at a given point in the region is zero, which of the following statements must be true? (Only one is always true.)The electric field is zero at that point.The electric potential energy is a minimum at that point.
\bigcirc There is no net charge in the region.
\otimes Some charges in the region are positive and some are negative.
\bigcirc The charges have the same sign and are symmetrically arranged around the given point.
