Name Date
PH 102 Quiz 8 SOLUTION
Note that these questions were taken directly from the homework.
1. The resolving power of a microscope is proportional to the wavelength used. A resolution of 1.0×10^{-11} (0.010 nm) would be required in order to "see" an atom. If electrons were used (electron microscope), who minimum kinetic energy would be required for the electrons? Ignore relativity. \bigcirc 15 keV \bigcirc 10 MeV \bigcirc 3 keV \bigcirc 125 keV
2. Same question as above, but using <i>photons</i> in place of electrons.
 15 keV 10 MeV 3 keV ★ 125 keV
3. Suppose Fuzzy, a quantum-mechanical duck, lives in a world in which $h = 2\pi$ J·s. Fuzzy has a mass 1.75 kg and is initially known to be within a pond 1.00 m wide. What is the minimum uncertainty in h speed?
 ○ 0.134 m/s ○ 0.571 m/s ○ 0.875 m/s ⊗ 0.286 m/s
4. Calculate the energy of a photon of wavelength $710\mathrm{nm}$
 ○ 75 eV ○ 1.75 eV ○ 2.5 eV ○ 5.0 eV
5. A pulsed ruby laser emits light at $694.3\mathrm{nm}$. For a $13.6\mathrm{ps}$ pulse containing $3.40\mathrm{J}$ of energy, find the number of photons in the pulse.
$\bigotimes 1.2 \times 10^{19}$ $\bigcirc 9.1 \times 10^{21}$ $\bigcirc 1.9 \times 10^{12}$ $\bigcirc 2.1 \times 10^{91}$