Date

PH 102 Quiz 7: Have you done your homework yet?

13Apr07 LeCla

E	=	$hf = \frac{hc}{\lambda}$	$\Delta E \Delta t$	\geq	$\frac{h}{4\pi}$
$e\Delta V$	=	$KE_{\max} = hf - \phi$	h	=	$6.624\times10^{-34}\mathrm{J\cdot s}$
$\lambda = \lambda$	_	$\frac{h}{1-\cos\theta}$	e	=	$1.602\times10^{-19}\mathrm{C}$
Nout Ain	_	$\frac{1}{m_ec}$ (1 (1 (0))	c	=	$3.00\times 10^8{\rm m/s}$
h	=	$\lambda \vec{\mathbf{p}} $	m_e	=	$9.11 \times 10^{-31} \mathrm{kg}$

1. An FM radio transmitter has a power output of 130 kW and operates at a frequency of 98.3 MHz. How many photons per second does the transmitter emit?

 $\bigcirc~2\times10^{30}$

 $\bigcirc 5 \times 10^{-29}$

 $\bigcirc~1\times10^{15}$

 \bigcirc 7 \times 10¹⁸

2. Light of wavelength 220 nm falls on a carbon surface, and electrons with 0.64 eV kinetic energy are emitted. What is the work function of carbon?

- $\bigcirc 4 \,\mathrm{eV}$
- $\bigcirc 3 \,\mathrm{eV}$
- $\bigcirc 5 \,\mathrm{eV}$
- $\bigcirc 0.2 \,\mathrm{eV}$

3. What is the minimum accelerating voltage required to produce a photon with $\lambda = 1 \text{ mm}$?

- $\bigcirc 1.2 \,\mathrm{mV}$
- $\bigcirc 1.2 \,\mathrm{V}$
- $\bigcirc 1.2 \, \text{kV}$
- $\bigcirc 0.12 \,\mathrm{V}$

4. X-rays with an energy of 320 keV undergo Compton scattering, and are deflected by 42°. What is the energy of the scattered X-ray?

- $\bigcirc 302 \, \mathrm{keV}$
- \bigcirc 161 keV
- $\bigcirc 275 \,\mathrm{keV}$
- \bigcirc 381 keV

5. A molecule is known to exist in an unstable higher energy configuration for $\Delta t = 10$ nsec, after which it relaxes to its lower energy stable state by emitting a photon. What uncertainty in the frequency of the emitted photon is implied?

- $\bigcirc 6 \, \mathrm{kHz}$
- \bigcirc 7 GHz
- $\bigcirc 8 \,\mathrm{MHz}$
- 9 Hz