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PH 102 Quiz 7: Have you done your homework yet?
13Apr07 LeClair

E = hf =
hc

λ
e∆V = KEmax = hf − φ

λout − λin =
h

mec
(1− cos θ)

h = λ|~p|

∆E∆t ≥ h

4π

h = 6.624× 10−34 J · s
e = 1.602× 10−19 C
c = 3.00× 108 m/s

me = 9.11× 10−31 kg

1. An FM radio transmitter has a power output of 130 kW and operates at a frequency of 98.3 MHz. How many
photons per second does the transmitter emit?⊗

2× 1030

© 5× 10−29

© 1× 1015

© 7× 1018

The power output P is the total energy per unit time, or the energy per photon times the number of photons per
unit time:

P =
Etot

∆t
=

(# photons) Ephoton

∆t
(1)

The energy per photon is given above, E =hf . Combining those two:

P =
(# photons) Ephoton

∆t
=

(# photons) hf

∆t
(2)

Solve for the number of photons per unit time, and plug in the numbers:

(# photons)
∆t

=
P
hf

=
130× 106 W

[6.624× 10−34 J · s]× [98.3× 106 s−1]
≈ 2× 1030 photons/s (3)

2. Light of wavelength 220 nm falls on a carbon surface, and electrons with 0.64 eV kinetic energy are emitted.
What is the work function of carbon?

© 4 eV
© 3 eV⊗

5 eV
© 0.2 eV

This is the photoelectric effect. The work function φ can be related to the maximum kinetic energy of ejected
electrons and the energy of the incident light:

KEmax = hf − φ = Ephoton − φ (4)

The work function is just the amount of energy required to liberate an electron from the metal surface into the
vacuum. Thus, the incident light energy per photon, hf , first has to overcome the work function φ, and what ever
energy is left over is given to the ejected electron as kinetic energy.

First, find we need the energy of the incident photons, hf . We will want this in eV, not J, so get that out of the
way ...
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Ephoton = hf =
hc

λ
=

[
6.624× 10−34 J · s

] [
3.00× 108 m/s

]
220× 10−9 m

× 1 eV
1.602× 10−19 J

≈ 5.64 eV (5)

φ = hf −KE = Ephoton −KE = 5.64− 0.64 eV ≈ 5 eV (6)

Incidentally: these problems are much easier if you remember (or write down) that the product hc is about
1240 eV·nm, so one has Ephoton(eV)=1240/λ(nm). This already takes into account dividing hc by e to get units of
eV.

3. What is the minimum accelerating voltage required to produce a photon with λ=1mm?⊗
1.2 mV

© 1.2 V
© 1.2 kV
© 0.12 V

The word “accelerating” is a decoy here, of sorts. What we are really asking is what is the minimum poten-
tial energy, given by an accelerating voltage, that could be used to produce a photon of the desired wavelength?
The idea is that all of the potential energy from the voltage applied to a single charge e is used for creating a photon.

Now, remember the formula from the last problem, putting the photon energy in eV, and note that 1mm is 106 nm:

PE = hf =
hc

λ

eV =
hc

λ

V =
hc

eλ
=

1240 eV · nm
λ

eV =
1.240× 103

106
= 1.24× 10−3 eV = 1.24 meV

Since we are talking about the energy given to a single charge, we can just write 1.24 mV in place of 1.24 meV.

Of course, you can just plug in the constants and numbers in the usual way, and not use the formula from problem
2, it will work out the same way.

4. X-rays with an energy of 320 keV undergo Compton scattering, and are deflected by 42◦. What is the energy of
the scattered X-ray?

© 302 keV
© 161 keV⊗

275 keV
© 381 keV

This one has a couple of steps. First, Compton scattering involves a photon coming in, and scattering off of an
electron. Afterward, the photon has a reduced energy, and the electron has gained energy. So right off, we know
the scattered X-ray had better have a lower energy than the incident X-ray. This rules out the last choice already.

Now, remember the formula for Compton scattering. This gives you the change in wavelength between the incident
and scattered light:

λout − λin =
h

mec
(1− cos θ)

λout = λin +
h

mec
(1− cos θ)
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We can find λin from the known energy of the incident X-ray:

λin =
hc

Ein
=

1240
320× 103

nm ≈ 3.875× 10−12 m (7)

Here we again used the modified formula from problem 2. Now we can calculate the scattered X-ray’s wavelength:

λout = λin +
h

mec
(1− cos θ) = 3.875× 10−12 m +

6.624× 10−34 J · s
[9.11× 10−31 kg] [3.00× 108 m]

(1− cos 42◦)

≈ 3.875× 10−12 + 6.23× 10−13 m ≈ 4.5× 10−12 m

Finally, given the scattered X-ray’s wavelength, we can find its energy.

Eout =
1240 eV · nm
4.5× 10−3 nm

≈ 2.75× 105 eV = 275 keV (8)

With Compton scattering, the wavelength change is small ... be sure to carry 4-5 digits precision in all stages of
the calculation (which I did not show here) to avoid rounding errors.

5. A molecule is known to exist in an unstable higher energy configuration for ∆t=10 nsec, after which it relaxes
to its lower energy stable state by emitting a photon. What uncertainty in the frequency of the emitted photon is
implied?

© 6 kHz
© 7 GHz⊗

8 MHz
© 9 Hz

Energy-time uncertainty tells us that there is a limit on the accuracy with which the energy of a system can be
measured over a given time interval ∆t. The lifetime of the excited state gives us a specific time interval over which
the molecule is in an excited state, and hence, in a specific energy state. This implies an uncertainty in the energy
of the excited state ∆E.

∆E∆t ≥ h

4π
(9)

When the molecule decays into the lower, stable state, a photon is emitted. The photon has to have an energy
equal to the difference in energies between the excited and lower energy states of the molecule, ∆E. This is just
conservation of energy. Since the emitted photon’s frequency is simply related to its frequency, Ephoton = hf , we
can write:

∆E∆t = ∆ (hf) ∆t = h∆f∆t ≥ h

4π

�h∆f∆t ≥ �h

4π

∆f ≥ 1
4π∆t

=
1

4π × 10−9 s
≈ 8× 106 Hz = 8MHz

3


