Quiz 4: Exam Review

Constant electric fields / capacitors:

$$
\begin{aligned}
& \Delta V=|\overrightarrow{\mathbf{E}}||\Delta \overrightarrow{\mathrm{x}}| \quad \Delta P E=q \Delta V \quad K E=\frac{1}{2} m v^{2} \quad Q=C \Delta V \quad C=\frac{\epsilon_{o} A}{d} \\
& F=\frac{k_{e} q_{1} q_{2}}{r^{2}} \quad k_{e}=9 \times 10^{9} \frac{\mathrm{Nm}^{2}}{\mathrm{C}^{2}} \quad I=\frac{\Delta Q}{\Delta t}=n q v_{d} A \quad E_{\text {cap }}=\frac{1}{2} Q \Delta V=\frac{Q^{2}}{2 C}
\end{aligned}
$$

I. Two particles are separated by a distance of 3.0 m ; each exerts an electric force of 1.0 N on the other. If one particle carries io times as much electric charge as the other, what is the magnitude of the smaller charge? Note $\mathrm{p}=10^{-12}, \mathrm{n}=10^{-9}, \mu=10^{-6}, \mathrm{k}=10^{3}$.

- 10 pC
- $10 \mu \mathrm{C}$
- 10 nC
- 10 kC

2. Suppose that a wire has a nonuniform cross section (thicker in some parts than others). Is the drift velocity of the electrons the same everywhere along this wire? The resistivity?

- yes; yes
- yes; no
- no; yes
- no; no

3. Consider a simple parallel-plate capacitor whose plates are given equal and opposite charges and are separated by a distance D. The capacitor is not connected to a battery. Suppose the plates are pushed together until they are separated by a distance $d<D$. How does the final electrostatic energy stored in the capacitor compare to the initial energy?

- The final stored energy is smaller than the initial stored energy.
- The final stored energy is greater than the initial stored energy.
- They are the same.

4. Car batteries are often rated in ampere-hours. This unit by itself designates the amount of which of the following that can be drawn from the battery?

- charge
- power
- energy
- current

