ANSWER SHEET - STAPLE TO FRONT OF EXAM

Name: \qquad

Lab section (circle one):
6 (W 3pm)
8 (W 7pm)

CWID:

5 (R 7pm)

7 (W 5pm)
10 (R 5pm)

Multiple choice:
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.

Short answer:
16.
17.
18.
19.
20.

Name \qquad Version A

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

1) While an object is in projectile motion (with upward being positive) with no air resistance
2)

A) the horizontal component of its velocity remains constant and the horizontal component of its acceleration is equal to $-g$.
B) the horizontal component of its velocity remains constant and the vertical component of its acceleration is equal to $-g$.
C) the vertical component of its velocity remains constant and the vertical component of its acceleration is equal to $-g$.
D) the vertical component of both its velocity and its acceleration remain constant.
E) the horizontal component of its velocity remains constant and the vertical component of its acceleration is equal to zero.
2) Two objects, one of mass m and the other of mass $2 m$, are dropped from the top of a building. When they hit the ground
A) the heavier one will have $\sqrt{2}$ times the kinetic energy of the lighter one.
B) the heavier one will have four times the kinetic energy of the lighter one.
C) both of them will have the same kinetic energy.
D) the heavier one will have twice the kinetic energy of the lighter one.
3) On a smooth horizontal floor, an object slides into a spring which is attached to another mass that is initially stationary. When the spring is most compressed, both objects are moving at the same speed. Ignoring friction, what is conserved during this interaction?
A) momentum and mechanical energy
B) kinetic energy only
C) momentum and kinetic energy
D) momentum and potential energy
E) momentum only
4) A box of mass m is pulled with a constant acceleration a along a horizontal frictionless floor by a
4) wire that makes an angle of 15° above the horizontal. If T is the tension in this wire, then
A) $T<m a$.
B) $T>m a$.
C) $T=m a$.
5) Which of the graphs in the figure represents a spring that gets less stiff the more it is stretched?
5) \qquad
a)

c) F

d)

A) Graph a
B) Graph b
C) Graph c
D) Graph d
6) A baseball is thrown vertically upward and feels no air resistance. As it is rising
A) both its momentum and its kinetic energy are conserved.
B) both its momentum and its mechanical energy are conserved.
C) its momentum is not conserved, but its mechanical energy is conserved.
D) its gravitational potential energy is not conserved, buts its momentum is conserved.
E) its kinetic energy is conserved, but its momentum is not conserved.
7) A $4.0-\mathrm{kg}$ object is moving with speed $2.0 \mathrm{~m} / \mathrm{s}$. A $1.0-\mathrm{kg}$ object is moving with speed $4.0 \mathrm{~m} / \mathrm{s}$. Both objects encounter the same constant braking force, and are brought to rest. Which object travels the greater distance before stopping?
A) the $1.0-\mathrm{kg}$ object
B) the $4.0-\mathrm{kg}$ object
C) Both objects travel the same distance.
D) It is impossible to know without knowing how long each force acts.
8) A ball is tossed vertically upward. When it reaches its highest point (before falling back
6)
) \qquad
7) \qquad downward)
A) the velocity and acceleration reverse direction, but the force of gravity on the ball remains downward.
B) the velocity is zero, the acceleration is zero, and the force of gravity acting on the ball is zero.
C) the velocity is zero, the acceleration is zero, and the force of gravity acting on the ball is directed downward.
D) the velocity, acceleration, and the force of gravity on the ball all reverse direction.
E) the velocity is zero, the acceleration is directed downward, and the force of gravity acting on the ball is directed downward.
9) A box of mass m is pressed against (but is not attached to) an ideal spring of force constant k and negligible mass, compressing the spring a distance x. After it is released, the box slides up a frictionless incline as shown in the figure and eventually stops. If we repeat this experiment with a box of mass $2 m$

Smooth

A) just as it moves free of the spring, the lighter box will be moving twice as fast as the heavier box.
B) just as it moves free of the spring, the heavier box will have twice as much kinetic energy as the lighter box.
C) both boxes will reach the same maximum height on the incline.
D) the lighter box will go twice as high up the incline as the heavier box.
E) both boxes will have the same speed just as they move free of the spring.
10) Two objects having masses m_{1} and m_{2} are connected to each other as shown in the figure and are
9) \qquad released from rest. There is no friction on the table surface or in the pulley. The masses of the pulley and the string connecting the objects are completely negligible. What must be true about the tension T in the string just after the objects are released?

A) $T=m_{1} g$
B) $T>m_{2} g$
C) $T=m_{2} g$
D) $T>m_{1} g$
E) $T<m_{2} g$
11) Two identical balls are thrown directly upward, ball A at speed v and ball B at speed $2 v$, and \qquad
12) \qquad
13) \qquad
14) car is
A) down the hill and greater than the weight of the car.
B) up the hill and equal to the weight of the car.
C) up the hill and greater than the weight of the car.
D) down the hill and equal to the weight of the car.
E) zero.
15) Alice and Tom dive from an overhang into the lake below. Tom simply drops straight down from
15) \qquad the edge, but Alice takes a running start and jumps with an initial horizontal velocity of $25 \mathrm{~m} / \mathrm{s}$. Neither person experiences any significant air resistance. Just as they reach the lake below
A) the speed of Alice will always be $25 \mathrm{~m} / \mathrm{s}$ larger than that of Tom.
B) the speed of Alice is larger than that of Tom.
C) the speed of Tom will always be $9.8 \mathrm{~m} / \mathrm{s}$ larger than that of Alice.
D) they will both have the same speed.
E) the splashdown speed of Alice is larger than that of Tom.

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

16) Consider the motion of a $1.00-\mathrm{kg}$ particle that moves with potential energy given by $U(x)=(-2.00 \mathrm{~J} \cdot \mathrm{~m}) / x+\left(4.00 \mathrm{~J} \cdot \mathrm{~m}^{2}\right) / x^{2}$. Suppose the particle is moving with a speed of 3.00 m / s when it is located at $x=1.00 \mathrm{~m}$. What is the speed of the object when it is located at $x=5.00 \mathrm{~m}$?
17) A $1.00-\mathrm{kg}$ mass is attached to a very light ideal spring hanging vertically and hangs at rest in the equilibrium position. The spring constant of the spring is $1.00 \mathrm{~N} / \mathrm{cm}$. The mass is pulled downward 2.00 cm and released. What is the speed of the mass when it is 1.00 cm above the point from which it was released?
18) A hobby rocket reaches a height of 66.6 m and lands 128 m from the launch point with no air resistance. What was the angle of launch?
19) An $8.0-\mathrm{g}$ bullet is shot into a $4.0-\mathrm{kg}$ block, at rest on a frictionless horizontal surface (see the figure). The bullet remains lodged in the block. The block moves into an ideal massless spring and compresses it by 8.7 cm . The spring constant of the spring is 2400 N / m. The initial velocity of the bullet is closest to

20) A $50.0-\mathrm{N}$ box is sliding on a rough horizontal floor, and the only horizontal force acting on it is friction. You observe that at one instant the box is sliding to the right at $1.75 \mathrm{~m} / \mathrm{s}$ and that it stops in 2.25 s with uniform acceleration. What magnitude force does friction exert on this box?

Formula sheet

$$
\begin{aligned}
g & =\left|\vec{a}_{\text {free fall }}\right|=9.81 \mathrm{~m} / \mathrm{s}^{2} \quad \text { near earth's surface } \\
0 & =a x^{2}+b x^{2}+c \Longrightarrow x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
1 \mathrm{~J} & =1 \mathrm{~kg} \cdot \mathrm{~m}^{2} / \mathrm{s}^{2}=1 \mathrm{~N} \cdot \mathrm{~m} \\
\Delta \vec{r} & =\vec{r}_{f}-\vec{r}_{i} \\
\text { speed } & =v=|\vec{v}| \quad \vec{v}_{a v} \equiv \frac{\Delta \vec{r}}{\Delta t} \quad \vec{v}=\lim _{\Delta t \rightarrow 0} \frac{\Delta \vec{r}}{\Delta t} \equiv \frac{d \vec{r}}{d t} \\
a_{x, a v} & \equiv \frac{\Delta v_{x}}{d t} \quad a_{x}=\lim _{\Delta t \rightarrow 0} \frac{\Delta v_{x}}{\Delta t} \equiv \frac{d v_{x}}{d t}=\frac{d}{d t}\left(\frac{d x}{d t}\right)=\frac{d^{2} x}{d t^{2}} \\
x_{f} & =x_{i}+v_{x, i} \Delta t+\frac{1}{2} a_{x}(\Delta t)^{2} \\
v_{x, f} & =v_{x, i}+a_{x} \Delta t \\
x(t) & =x_{i}+v_{x, i} t+\frac{1}{2} a_{x} t^{2} \\
v_{x}(t) & =v_{x, i}+a_{x} t \\
v_{x, f}^{2} & =v_{x, i}^{2}+2 a_{x} \Delta x \\
\downarrow & \text { launched from origin, level ground } \\
y(x) & =\left(\tan \theta_{o}\right) x-\frac{g x^{2}}{2 v_{o}^{2} \cos ^{2} \theta_{o}}
\end{aligned}
$$

$$
\begin{aligned}
\Delta \vec{p} & =\overrightarrow{0} \quad \vec{p}_{f}=\vec{p}_{i} \quad \text { isolated system } \\
\vec{p} & \equiv m \vec{v} \\
m_{u} & =-\frac{\Delta v_{s, x}}{\Delta v_{u, x}} m_{s} \\
\vec{J} & =\Delta \vec{p} \\
v_{1 f} & =\left(\frac{m_{1}-m_{2}}{m_{1}+m_{2}}\right) v_{i 1}+\left(\frac{2 m_{2}}{m_{1}+m_{2}}\right) v_{2 i} \quad \text { 1D elastic } \\
v_{2 f} & =\left(\frac{2 m_{1}}{m_{1}+m_{2}}\right) v_{1 i}+\left(\frac{m_{2}-m_{1}}{m_{1}+m_{2}}\right) v_{2 i} \quad \text { 1D elastic } \\
\vec{v}_{12} & =\vec{v}_{2}-\vec{v}_{1} \quad \text { relative velocity } \\
v_{12} & =\left|\vec{v}_{2}-\vec{v}_{1}\right| \quad \text { relative speed }
\end{aligned}
$$

$$
\begin{aligned}
\Delta U^{G} & =m g \Delta x \\
\frac{a_{1 x}}{a_{2 x}} & =-\frac{m_{2}}{m_{1}} \\
E_{\mathrm{mech}} & =K+U \quad K=\frac{1}{2} m v^{2} \\
\Delta E & =\Delta K+\Delta U=0 \quad \text { non-dissipative, closed }
\end{aligned}
$$

$$
\vec{a}=\frac{\sum \vec{F}}{m} \quad a_{c m}^{\vec{~}}=\frac{\sum \vec{F}_{\mathrm{ext}}}{m} \quad \sum \vec{F} \equiv \frac{d \vec{p}}{d t}
$$

$$
\vec{J}=\left(\sum \vec{F}\right) \Delta t \quad \text { constant force }
$$

$$
\vec{J}=\int_{t_{i}}^{t_{f}} \sum \vec{F}(t) d t \quad \text { time-varying force }
$$

$$
\vec{F}_{12}=-\vec{F}_{21}
$$

$$
\begin{aligned}
\Delta E & =W \\
\Delta U_{\text {spring }} & =\frac{1}{2} k\left(x-x_{o}\right)^{2} \\
P & =\frac{d E}{d t} \\
P & =F_{\text {ext }, \mathrm{x}} v_{x} \quad \text { one dimension } \\
W & =\left(\sum_{F}\right) \Delta x_{F} \quad \text { constant foce 1D } \\
W & =\sum_{n}\left(F_{\text {ext }, \mathrm{x}} \Delta x_{F n}\right) \quad \text { const nondiss., many particles, 1D } \\
W & =\int_{x_{i}}^{x_{f}} F_{x}(x) d x \quad \text { nondiss. force, 1D }
\end{aligned}
$$

$$
\begin{aligned}
\left(F_{12}^{s}\right)_{\max } & =\mu_{s} F_{12}^{n} \\
F_{12}^{k} & =\mu_{k} F_{12}^{n} \\
\vec{A} & =\vec{A}_{x}+\vec{A}_{y}=A_{x} \hat{\boldsymbol{\imath}}+A_{y} \hat{\boldsymbol{\jmath}} \\
\vec{A} \cdot \vec{B} & =A B \cos \phi=A_{x} B_{x}+A_{y} B_{y} \\
W & =\vec{F} \cdot \Delta \vec{r}_{F} \quad \text { const non-diss force } \\
W & =\int_{\vec{r}_{i}}^{\vec{r}_{f}} \vec{F}(\vec{r}) \cdot d \vec{r} \quad \text { variable nondiss force }
\end{aligned}
$$

Power	Prefix	Abbreviation
10^{-12}	pico	p
10^{-9}	nano	n
10^{-6}	micro	μ
10^{-3}	milli	m
10^{-2}	centi	c
10^{3}	kilo	k
10^{6}	mega	M
10^{9}	giga	G
10^{12}	tera	T

Answer Key
Testname: F15 PH105 EXAM 1B

1) B
2) D
3) A
4) B
5) D
6) C
7) C
8) E
9) D
10) E
11) C
12) A
13) B
14) E
15) B
16) $3.67 \mathrm{~m} / \mathrm{s}$
17) $1.73 \mathrm{~m} / \mathrm{s}$
18) 64.3°
19) $1100 \mathrm{~m} / \mathrm{s}$.
20) 3.97 N
