Exam					
Name					
ivaille					
MULTIPL	E CHOICE. Choose th	e one alternative that b	est completes the state	ment or answers the ques	tion.
1) '		e is described in the velo			1)
	cuit suy that its speed	$\int v (m/s)$			
		4			
		3+			
		2			
		+			
		-1 1 2 3 4	5 6 7 8 9 t (s)		
		-2+			
	A) increases.	-3 T	B) decreases and	I than in avagage	
	C) increases and the	n decreases.	D) decreases and	i men increases.	
			_ /		
SHORT A	NSWER. Write the wo	rd or phrase that best c	ompletes each stateme	nt or answers the questio	n.
1	minutes. She then turns	rogram, a woman walks s around and walks nort s average velocity during	th a distance 3000 m in		
MULTIPL	E CHOICE. Choose th	e one alternative that b	est completes the state	ment or answers the ques	tion.
Ú		et as a function of time is are in SI units. What is t			3)
ı	A) 2.3 m/s	B) 2.7 m/s	C) 1.7 m/s	D) 2.1 m/s	
	When can we be certain instantaneous velocity? A) always	that the average velocit	ty of an object is always	equal to its	4)
	B) never				
	-	celeration is changing a	t a constant rate		
	D) only when the ve	2			
	上) only when the ac	celeration is constant			
5) .	A child on a sled starts	from rest at the top of a	15° slope. If the trip to t	he bottom takes 15.2 s	5)

how long is the slope? Assume that frictional forces may be neglected.

-	she must stop the nitude of the const	car. If it takes 0.200 s for ant acceleration of the	r the driver to app	oly the brakes,	6)
	d strikes the groun	d. The initial velocity one ball strikes the groun	f the ball is 36.2 n		7)
11) 7.0 3	D) 0.7 3	C) 10 3	0, 7.7 3	L) 7.43	
8) A car accelerates from while accelerating?	10.0 m/s to 30.0 m	n/s at a rate of 3.00 m/s	s ² . How far does	the car travel	8)
A) 226 m	B) 133 m	C) 399 m	D)	80.0 m	
9) The position of an object $c = 1.7 \text{ m/s}$, and $x = 0.7 \text{ s}$?	0 2	$t^3 - bt^2 + ct$, where $a = 4$ That is the instantaneou			9)
A) 2.9 m/s^2	B) -13 m/s^2	C) 4.6 m/	s^2 D)	13 m/s^2	
10) Two objects are dropped air resistance. As time A) remains constar B) increases. C) decreases at first D) increases at first E) decreases.	progresses, the DII nt. t, but then stays co	FFERENCE in their spe	-	no appreciable	10)
11) Two objects are thrown	_				11)
What are their speeds A) They are traveli B) The one thrown C) The one thrown	when they hit the s ng at the same spe up is traveling fas	ed. ter.	n with the same i	nitial speed.	
12) Suppose that a car trav traffic light. Which sta A) Its acceleration : B) Its acceleration : C) Both its accelera D) Both its accelera	tement concerning is positive but its vis negative but its vition and its velocit	its acceleration in the <i>x</i> relocity is negative. Velocity is positive. The ty are positive.			12)

13) You are standing on a ska	nteboard, initially at res	st. A friend throws a ver	v heavy ball towards	13)
you. You can either catch moves away from you wi order to MINIMIZE your A) Deflect the ball. B) Catch the ball.	the object or deflect the	e object back towards yo t was originally thrown)	our friend (such that it	,
C) Your final speed or or deflect the ball.	n the skateboard will b	e the same regardless wl	hether you catch the ball	
14) Two identical objects <i>A</i> ar appreciable air resistance is the ratio of the heights	. If object B takes TWI	CE as long as object A to		14)
A) $h_{A}/h_{B} = 1/4$		B) $h_{A}/h_{B} = 1/8$		
C) $h_{A}/h_{B} = 1/\sqrt{2}$		D) $h_{\rm A}/h_{\rm B} = 1/2$		
15) In a collision between two	o objects having unequ	al masses, how does ma	gnitude of the impulse	15)
C) The heavier object D) The answer depend	bject by the lighter one	se. Ise. nasses.	nitude of the impulse	
16) A 480-kg car moving at 1 direction. If the new spee the collision, assuming th	d of the heavier car is î	$14.0 \mathrm{m/s}$, what is the spe	eed of the lighter car after	16)
A) 10.5 m/s	B) 5.24 m/s	C) 13.6 m/s	D) 19.9 m/s	
17) Two ice skaters push off a	0		<u> </u>	17)
skater acquires a speed of any other unbalanced for A) 0.000 m/s B) 0.750 m/s C) 0.281 m/s D) 0.500 m/s E) 0.375 m/s	•	O .	er acquire? Assume that	
18) A 1000.0 kg car is moving car, how fast is the truck in		0 kg truck has 18 times t	he kinetic energy of the	18)
A) 36 km/h	B) 54 km/h	C) 45 km/h	D) 63 km/h	

19) A shell explodes into two fragments, one fragment 25 times heavier than the other. If any gas	19)	
from the explosion has negligible mass, then		
A) the kinetic energy change of the heavier fragment is 25 times as great as the kinetic energy change of the lighter fragment.		
B) the momentum change of the lighter fragment is exactly the same as the momentum change of the heavier fragment.		
C) the kinetic energy change of the lighter fragment is 25 times as great as the kinetic energy change of the heavier fragment.		
D) the momentum change of the lighter fragment is 25 times as great as the momentum change of the heavier fragment.		
E) the momentum change of the heavier fragment is 25 times as great as the momentum change of the lighter fragment.		
20) A car of mass 1689 kg collides head-on with a parked truck of mass 2000 kg. Spring mounted bumpers ensure that the collision is essentially elastic. If the velocity of the truck is 17 km/h (in the same direction as the car's initial velocity) after the collision, what was the initial speed of the car?	20)	

B) 10 km/h

A) 19 km/h

C) 38 km/h

D) 29 km/h

$g = \vec{\mathbf{a}}_{\mathrm{free\ fall}} = 9.81\mathrm{m/s^2}$ near earth's surface
$0 = ax^2 + bx^2 + c \Longrightarrow x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$
$1 J = 1 kg \cdot m^2/s^2 = 1 N \cdot m$
$\Delta ec{\mathbf{r}} = ec{\mathbf{r}}_f - ec{\mathbf{r}}_i$
$d \equiv x_1 - x_2 $
$b \equiv \vec{\mathbf{b}} = b_x $ one dimension
$\vec{\mathbf{r}} = x \hat{\imath}$ one dimension
$\vec{\mathbf{b}} = b_x \hat{\imath}$ one dimension

Power	Prefix	Abbreviation
10^{-12}	pico	p
10^{-9}	nano	n
10^{-6}	micro	μ
10^{-3}	milli	m
10^{-2}	centi	\mathbf{c}
10^{3}	kilo	k
10^{6}	mega	\mathbf{M}
10^{9}	giga	G
10^{12}	tera	${ m T}$

$$\operatorname{speed} = v = |\vec{\mathbf{v}}|$$

$$\vec{\mathbf{v}}_{av} \equiv \frac{\Delta \vec{\mathbf{r}}}{\Delta t}$$

$$\vec{\mathbf{v}} = \lim_{\Delta t \to 0} \frac{\Delta \vec{\mathbf{r}}}{\Delta t} \equiv \frac{d\vec{\mathbf{r}}}{dt}$$

$$a_{x,av} \equiv \frac{\Delta v_x}{dt}$$

$$a_x = \lim_{\Delta t \to 0} \frac{\Delta v_x}{\Delta t} \equiv \frac{dv_x}{dt} = \frac{d}{dt} \left(\frac{dx}{dt}\right) = \frac{d^2x}{dt^2}$$

$$x_f = x_i + v_{x,i}\Delta t + \frac{1}{2}a_x \left(\Delta t\right)^2$$

$$v_{x,f} = v_{x,i} + a_x\Delta t$$

$$x(t) = x_i + v_{x,i}t + \frac{1}{2}a_xt^2$$

$$v_x(t) = v_{x,i} + a_xt$$

$$v_{x,f}^2 = v_{x,i}^2 + 2a_x\Delta x$$

 $\Delta \vec{\mathbf{p}} = \vec{\mathbf{0}}$ isolated system

 $\vec{\mathbf{p}}_f = \vec{\mathbf{p}}_i$ isolated system

 $\vec{\mathbf{p}} \equiv m\vec{\mathbf{v}}$

$$m_u = -\frac{\Delta v_{s,x}}{\Delta v_{u,x}} m_s$$

 $\vec{\mathbf{J}} = \Delta \vec{\mathbf{p}}$

$$\begin{aligned} v_{1f} &= \left(\frac{m_1 - m_2}{m_1 + m_2}\right) v_{i1} + \left(\frac{2m_2}{m_1 + m_2}\right) v_{2i} & \text{1D elastic} \\ v_{2f} &= \left(\frac{2m_1}{m_1 + m_2}\right) v_{1i} + \left(\frac{m_2 - m_1}{m_1 + m_2}\right) v_{2i} & \text{1D elastic} \end{aligned}$$

 $\Delta E = 0$ isolated system

$$K = \frac{1}{2}mv^2$$

 $\vec{v}_{12} = \vec{\mathbf{v}}_2 - \vec{\mathbf{v}}_1$ relative velocity

 $v_{12} = |\vec{\mathbf{v}}_2 - \vec{\mathbf{v}}_1|$ relative speed

Answer Key Testname: EXAM1

- 1) B
- 2) (a) A (b) C
- 3) D
- 4) D
- 5) B
- 6) B
- 7) E 8) B
- 9) D
- 10) A
- 11) A
- 12) A
- 13) B
- 14) A
- 15) A 16) C
- 17) C 18) C
- 19) B 20) A