Name			

D) 9.0 N west E) 12 N east

1) Is it possible for a	system to have nega	ative potential ener	gy?		1)
~	he choice of the zero	-			,
	e this would have no	2 2			
	g as the kinetic energ		1		
	e the kinetic energy is as the total energy is	•	qual its potential er	ergy.	
E) Tes, as long	g as the total ellergy	is positive.			
2) Consider the mot	ion of a 1.00-kg part	icle that moves wit	h potential energy	given by	2)
$U(x) = (-2.00 \text{ J} \cdot \text{m})$	$(x + (4.00 \text{ J} \cdot \text{m}^2)/x^2)$. S	uppose the particle	is moving with a s	peed of 3.00 m/s	
	at $x = 1.00$ m. What	is the speed of the	object when it is lo		
A) 2.13 m/s	B) 3.67 m	n/s C)	4.68 m/s	D) 3.00 m/s	
3) A 2 00 -kg object	traveling east at 20.0	m/s collides with	a 3.00-kg object tra	veling west at 10.0	3)
0 ,	ollision, the 2.00-kg (0 ,	O .	0)
	s lost during the coll	,	·		
A) 91.7 J	B) 0.000 J	C) 516 J	D) 175 J	E) 458 J	
l) You swing a bat a	nd hit a heavy box w	with a force of 1500	N. The force the bo	x exerts on the bat is	4)
*	500 N if the box mov				
	0 N whether or not t				
	n 1500 N if the bat be				
0	n 1500 N if the box n 0 N only if the box d				
E) exactly 150	o is omy if the box to	oes not move.			
6) A 7.0-kg object is	acted on by two for	ces. One of the for	ces is 10.0 N acting	toward the east.	5)
	owing forces is the ot	her force if the acco	eleration of the obje	ect is 1.0 m/s^2	
toward the east?					
A) 3.0 N west					
B) 7.0 N west					

6) Point *P* in the figure indicates the position of an object traveling at constant speed clockwise around the circle. Which arrow best represent the direction the object would travel if the net external force on it were suddenly reduced to zero?

7) Consider what happens when you jump up in the air. Which of the following is the most accurate statement?

- A) Since the ground is stationary, it cannot exert the upward force necessary to propel you into the air. Instead, it is the internal forces of your muscles acting on your body itself that propels your body into the air.
- B) When you push down on the earth with a force greater than your weight, the earth will push back with the same magnitude force and thus propel you into the air.
- C) When you jump up the earth exerts a force F_1 on you and you exert a force F_2 on the earth. You go up because $F_1 > F_2$.
- D) It is the upward force exerted by the ground that pushes you up, but this force cannot exceed your weight.
- E) You are able to spring up because the earth exerts a force upward on you that is greater than the downward force you exert on the earth.

8) Two objects having masses m_1 and m_2 are connected to each other as shown in the figure and are released from rest. There is no friction on the table surface or in the pulley. The masses of the pulley and the string connecting the objects are completely negligible. What must be true about the tension T in the string just after the objects are released?

- A) $T < m_2 g$ B) $T > m_2 g$ C) $T = m_1 g$ D) $T = m_2 g$

- 9) Consider two less-than-desirable options. In the first you are driving 30 mph and crash head-on into an identical car also going 30 mph. In the second option you are driving 30 mph and crash head-on into a stationary brick wall. In neither case does your car bounce off the thing it hits, and the collision time is the same in both cases. Which of these two situations would result in the greatest impact force?
 - A) hitting the brick wall
 - B) hitting the other car
 - C) The force would be the same in both cases.
 - D) We cannot answer this question without more information.
 - E) None of these is true.
- 10) A 50.0 N box is sliding on a rough horizontal floor, and the only horizontal force acting on it is friction. You observe that at one instant the box is sliding to the right at $1.75 \, \text{m/s}$ and that it stops in $2.25 \, \text{s}$ with uniform acceleration. What magnitude force does friction exert on this box?

- A) 490 N
- B) 38.9 N
- C) 3.97 N
- D) 8.93 N
- E) 50.0 N

E) $T > m_1 g$

- 11) On its own, a certain tow-truck has a maximum acceleration of 3.0 m/s^2 . What would be the maximum acceleration when this truck was towing a bus of twice its own mass?
- 11) _____

- A) 1.0 m/s^2
- B) $2.5 \, \text{m/s}^2$
- C) 1.5 m/s^2
- D) $2.0 \, \text{m/s}^2$

12) The figure shows a 100-kg block being released from rest from a height of 1.0 m. It then takes it 0.90 s to reach the floor. What is the mass m of the other block? The pulley has no appreciable mass or friction.

- A) 42 kg
- B) 48 kg
- C) 54 kg
- D) 60 kg
- 13) An object attached to an ideal massless spring is pulled across a frictionless surface. If the spring constant is $45~\rm N/m$ and the spring is stretched by $0.88~\rm m$ when the object is accelerating at
- 13) ____

- 2.0 m/s^2 , what is the mass of the object?
 - A) 22 kg
- B) 20 kg
- C) 17 kg
- D) 26 kg
- 14) Two identical balls are thrown directly upward, ball A at speed v and ball B at speed v, and they feel no air resistance. Which statement about these balls is correct?
- 14) ____
- A) The balls will reach the same height because they have the same mass and the same acceleration.
- B) At its highest point, ball *B* will have twice as much gravitational potential energy as ball *A* because it started out moving twice as fast.
- C) Ball *B* will go twice as high as ball *A* because it had twice the initial speed.
- D) At their highest point, the acceleration of each ball is instantaneously equal to zero because they stop for an instant.
- E) Ball *B* will go four times as high as ball *A* because it had four times the initial kinetic energy.
- 15) Which, if any, of the following statements concerning the work done by a conservative force is NOT true?
- 15) ____
- A) It is independent of the path of the body and depends only on the starting and ending points.
- B) It can always be expressed as the difference between the initial and final values of a potential energy function.
- C) When the starting and ending points are the same, the total work is zero.
- D) All of the above statements are true.
- E) None of the above statements are true.

•	vork to stretch an ideal			
20 m What is the		very light spring from a lengt	th of 1.4 m to a length of	16)
2.9 m. what is the	value of the spring con	stant of this spring?	_	
A) 22 N/m	B) 44 N/m	C) 15 N/m	D) 29 N/m	
, .	,	,	,	
2				>
		re the value of b is 3.7 N/m ³ .	How much work is	17)
-		mx = 0.00 m to $x = 2.6 m$?		
A) 13 J	B) 57 J	C) 50 J	D) 42 J	
18) A constant horizor	ntal pull acts on a sled o	on a horizontal frictionless ice	pond. The sled starts	18)
		a a b a b a		
	instead acts over twice		are units a runnerse entergy	
		s kinetic energy will be $K\sqrt{2}$.		
_	•			
		inetic energy will be $K\sqrt{2}$.		
-	•	kinetic energy will be 2K.		
D) The sled's sp	peed will be $4v$ and its l	kinetic energy will be 2K.		
E) The sled's s	beed will be $v\sqrt{2}$ and it	s kinetic energy will be 2K.		
•	•	0.7		
19) An object is attach	od to a hanging unetrot	ched ideal and massless sprin	og and clawly lawared to	19)
		cm below the starting point. If		
		~ -	_	
	,	om rest, how far then would i	it their stretch the spring	
at maximum elong		C) 2(D) 10	E) 12	
A) 6.4 cm	B) 9.1 cm	C) 26 cm D) 18 c	em E) 13 cm	
20) For general project				
20) Tot general project	tile motion, when the p	rojectile is at the highest point	t of its trajectory	20)
	tile motion, when the p tal component of its vel		t of its trajectory	20)
A) the horizont	_	ocity is zero.	t of its trajectory	20)
A) the horizont B) its velocity i	tal component of its vel s perpendicular to the	ocity is zero. acceleration.	t of its trajectory	20)
A) the horizont B) its velocity i C) its velocity a	tal component of its vel as perpendicular to the and acceleration are bot	ocity is zero. acceleration. h zero.	t of its trajectory	20)
A) the horizont B) its velocity i C) its velocity a D) the horizont	tal component of its velues perpendicular to the and acceleration are bottal and vertical components.	ocity is zero. acceleration.	t of its trajectory	20)
A) the horizont B) its velocity i C) its velocity a	tal component of its velues perpendicular to the and acceleration are bottal and vertical components.	ocity is zero. acceleration. h zero.	t of its trajectory	20)
A) the horizont B) its velocity i C) its velocity a D) the horizont E) its accelerati	tal component of its velues perpendicular to the and acceleration are bottal and vertical componion is zero.	ocity is zero. acceleration. h zero. ents of its velocity are zero.		, <u> </u>
A) the horizont B) its velocity i C) its velocity a D) the horizont E) its accelerate	tal component of its velues perpendicular to the sand acceleration are bottal and vertical componion is zero.	ocity is zero. acceleration. h zero. ents of its velocity are zero. oot a dart, from ground level,	provided our toy dart	20)
A) the horizont B) its velocity i C) its velocity a D) the horizont E) its accelerate 21) What is the maxim gun gives a maxim	tal component of its velus perpendicular to the sand acceleration are bottal and vertical componion is zero. The same that the	ocity is zero. acceleration. h zero. ents of its velocity are zero. oot a dart, from ground level, .78 m/s and air resistance is r	provided our toy dart negligible?	, <u> </u>
A) the horizont B) its velocity i C) its velocity a D) the horizont E) its accelerate	tal component of its velues perpendicular to the sand acceleration are bottal and vertical componion is zero.	ocity is zero. acceleration. h zero. ents of its velocity are zero. oot a dart, from ground level,	provided our toy dart	, <u> </u>
A) the horizont B) its velocity i C) its velocity a D) the horizont E) its accelerate 21) What is the maxim gun gives a maxim	tal component of its velus perpendicular to the sand acceleration are bottal and vertical componion is zero. The same that the	ocity is zero. acceleration. h zero. ents of its velocity are zero. oot a dart, from ground level, .78 m/s and air resistance is r	provided our toy dart negligible?	, <u> </u>
A) the horizont B) its velocity i C) its velocity a D) the horizont E) its accelerate 21) What is the maxim gun gives a maxim A) 1.39 m	tal component of its velus perpendicular to the sand acceleration are bottal and vertical componion is zero. The same distance we can show initial velocity of 2 B) 1.58 m	ocity is zero. acceleration. h zero. ents of its velocity are zero. oot a dart, from ground level, .78 m/s and air resistance is r	provided our toy dart negligible? D) 0.789 m	, <u> </u>
A) the horizont B) its velocity i C) its velocity a D) the horizont E) its accelerate 21) What is the maxim gun gives a maxim A) 1.39 m	tal component of its velus perpendicular to the sand acceleration are bottal and vertical componion is zero. The same distance we can show initial velocity of 2 B) 1.58 m	ocity is zero. acceleration. th zero. ents of its velocity are zero. oot a dart, from ground level, .78 m/s and air resistance is r C) 0.394 m	provided our toy dart negligible? D) 0.789 m	21)
A) the horizont B) its velocity i C) its velocity a D) the horizont E) its accelerate 21) What is the maxim gun gives a maxim A) 1.39 m 22) A hobby rocket rearesistance. What we	tal component of its velus perpendicular to the sand acceleration are bottal and vertical componion is zero. The distance we can show in the sand in	ocity is zero. acceleration. th zero. ents of its velocity are zero. oot a dart, from ground level, .78 m/s and air resistance is r C) 0.394 m	provided our toy dart negligible? D) 0.789 m unch point with no air	21)
A) the horizont B) its velocity i C) its velocity a D) the horizont E) its accelerate 21) What is the maxim gun gives a maxim A) 1.39 m	tal component of its velus perpendicular to the sand acceleration are bottal and vertical componion is zero. The same distance we can shown initial velocity of 2 B) 1.58 m The same aches a height of 72.3 m The same aches a height of launch?	ocity is zero. acceleration. th zero. ents of its velocity are zero. oot a dart, from ground level, .78 m/s and air resistance is r C) 0.394 m	provided our toy dart negligible? D) 0.789 m	21)
A) the horizont B) its velocity i C) its velocity a D) the horizont E) its accelerate 21) What is the maxim gun gives a maxim A) 1.39 m 22) A hobby rocket rearesistance. What w A) 67.4°	tal component of its velus perpendicular to the sand acceleration are bottal and vertical componion is zero. The same distance we can show in initial velocity of 2 B) 1.58 m The same height of 72.3 m and the same height of launch? B) 44.8°	ocity is zero. acceleration. ch zero. ents of its velocity are zero. oot a dart, from ground level, .78 m/s and air resistance is r C) 0.394 m a and lands 111 m from the lau C) 22.6°	provided our toy dart negligible? D) 0.789 m anch point with no air D) 69.0°	21)
A) the horizont B) its velocity i C) its velocity a D) the horizont E) its accelerate 21) What is the maxim gun gives a maxim A) 1.39 m 22) A hobby rocket rearesistance. What w A) 67.4°	tal component of its velus perpendicular to the sand acceleration are bottal and vertical componion is zero. The distance we can show initial velocity of 2 B) 1.58 m The aches a height of 72.3 m as the angle of launch? B) 44.8° The control of the control o	ocity is zero. acceleration. th zero. ents of its velocity are zero. oot a dart, from ground level, 78 m/s and air resistance is r C) 0.394 m and lands 111 m from the lan C) 22.6° ty of 2.15 m/s at 30.0° above	provided our toy dart negligible? D) 0.789 m unch point with no air D) 69.0° the horizontal. If air	21)
A) the horizont B) its velocity i C) its velocity a D) the horizont E) its accelerate 21) What is the maxim gun gives a maxim A) 1.39 m 22) A hobby rocket rearesistance. What w A) 67.4° 23) A boy throws a roc resistance is negliging	tal component of its velus perpendicular to the sand acceleration are bottal and vertical componion is zero. The distance we can show initial velocity of 2 B) 1.58 m The aches a height of 72.3 m as the angle of launch? B) 44.8° The control of the control o	ocity is zero. acceleration. ch zero. ents of its velocity are zero. oot a dart, from ground level, .78 m/s and air resistance is r C) 0.394 m a and lands 111 m from the lau C) 22.6°	provided our toy dart negligible? D) 0.789 m unch point with no air D) 69.0° the horizontal. If air	21)
A) the horizont B) its velocity i C) its velocity a D) the horizont E) its accelerate 21) What is the maxim gun gives a maxim A) 1.39 m 22) A hobby rocket rearesistance. What w A) 67.4°	tal component of its velus perpendicular to the sand acceleration are bottal and vertical componion is zero. The distance we can show initial velocity of 2 B) 1.58 m The aches a height of 72.3 m as the angle of launch? B) 44.8° The control of the control o	ocity is zero. acceleration. th zero. ents of its velocity are zero. oot a dart, from ground level, 78 m/s and air resistance is r C) 0.394 m and lands 111 m from the lan C) 22.6° ty of 2.15 m/s at 30.0° above	provided our toy dart negligible? D) 0.789 m unch point with no air D) 69.0° the horizontal. If air	21)

Version A

24) An object has a position given by $r = [2.0 \text{ m} + (3.00 \text{ m/s})t]t^{4} + [3.0 \text{ m} - (2.00 \text{ m/s}^{2})t^{2}]t^{4}$, where all quantities are in SI units. What is the magnitude of the acceleration of the object at time $t = 1.0 \text{ m}$	24)	
2.00 s?		
A) 0.522 m/s^2		
B) 2.00 m/s^2		
C) 1.00 m/s^2		

- 25) A 60.0-kg person rides in an elevator while standing on a scale. The scale reads 400 N. The acceleration of the elevator is closest to
 - A) $6.67 \,\mathrm{m/s^2}$ upward.
 - B) zero.

D) 4.00 m/s² E) 0.00 m/s²

- C) 9.80 m/s^2 downward.
- D) 3.13 m/s^2 downward.
- E) 6.67 m/s^2 downward.

Formula sheet

basics

$$g = |\vec{a}_{\text{free fall}}| = 9.81 \, \text{m/s}^2 \quad \text{near earth's surface}$$

$$\text{sphere} \quad V = \frac{4}{3} \pi r^3$$

$$ax^2 + bx^2 + c = 0 \Longrightarrow x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$\frac{d}{dx} \sin ax = a \cos ax \qquad \frac{d}{dx} \cos ax = -a \sin ax$$

$$\int \cos ax \, \text{dx} = \frac{1}{a} \sin ax \qquad \int \sin ax \, \text{dx} = -\frac{1}{a} \cos ax$$

$$\vec{A} = \vec{A}_x + \vec{A}_y = A_x \, \hat{\imath} + A_y \, \hat{\jmath}$$

$$\vec{A} \cdot \vec{B} = AB \cos \phi = A_x B_x + A_y B_y$$

$$|\vec{F}| = \sqrt{F_x^2 + F_y^2} \quad \text{magnitude}$$

$$\theta = \tan^{-1} \left[\frac{F_y}{F_x} \right] \quad \text{direction}$$

1D & 2D motion

$$\Delta \vec{r} = \vec{r}_f - \vec{r}_i$$

$$\operatorname{speed} = v = |\vec{v}| \quad \vec{v}_{av} \equiv \frac{\Delta \vec{r}}{\Delta t} \quad \vec{v} = \lim_{\Delta t \to 0} \frac{\Delta \vec{r}}{\Delta t} \equiv \frac{d\vec{r}}{dt}$$

$$a_{x,av} \equiv \frac{\Delta v_x}{dt} \quad a_x = \lim_{\Delta t \to 0} \frac{\Delta v_x}{\Delta t} \equiv \frac{dv_x}{dt} = \frac{d}{dt} \left(\frac{dx}{dt}\right) = \frac{d^2x}{dt^2}$$

$$x_f = x_i + v_{x,i}\Delta t + \frac{1}{2}a_x \left(\Delta t\right)^2$$

$$v_{x,f} = v_{x,i} + a_x\Delta t$$

$$x(t) = x_i + v_{x,i}t + \frac{1}{2}a_xt^2$$

$$v_x(t) = v_{x,i} + a_xt$$

$$v_{x,f}^2 = v_{x,i}^2 + 2a_x\Delta x$$

$$\downarrow \quad \text{launched from origin, level ground}$$

$$y(x) = (\tan \theta_o) x - \frac{gx^2}{2v_o^2 \cos^2 \theta_o}$$

$$\max \text{height} = H = \frac{v_i^2 \sin^2 \theta_i}{2g}$$

$$\operatorname{Range} = R = \frac{v_i^2 \sin 2\theta_i}{g}$$

momentum

$$\begin{split} \Delta \vec{p} &= \vec{0} \quad \vec{p}_f = \vec{p}_i \quad \text{isolated system} \qquad \vec{p} = m \vec{v} \qquad \vec{J} = \Delta \vec{p} \\ v_{1f} &= \left(\frac{m_1 - m_2}{m_1 + m_2}\right) v_{i1} + \left(\frac{2m_2}{m_1 + m_2}\right) v_{2i} \quad \text{1D elastic} \\ v_{2f} &= \left(\frac{2m_1}{m_1 + m_2}\right) v_{1i} + \left(\frac{m_2 - m_1}{m_1 + m_2}\right) v_{2i} \quad \text{1D elastic} \\ \vec{v}_{12} &= \vec{v}_2 - \vec{v}_1 \quad \text{relative velocity} \\ v_{12} &= |\vec{v}_2 - \vec{v}_1| \quad \text{relative speed} \end{split}$$

interactions

$$\begin{split} \Delta U^G &= mg\Delta x & \frac{a_{1x}}{a_{2x}} = -\frac{m_2}{m_1} \\ E_{\rm mech} &= K + U \quad K = \frac{1}{2} m v^2 \\ \Delta E_{\rm mech} &= \Delta K + \Delta U = 0 \quad \text{non-dissipative, closed} \end{split}$$

force

$$\vec{a} = \frac{\sum \vec{F}}{m} \qquad a_{\vec{c}m} = \frac{\sum \vec{F}_{\rm ext}}{m} \qquad \sum \vec{F} \equiv \frac{d\vec{p}}{dt} \quad \vec{F}_{12} = -\vec{F}_{21}$$

$$\vec{J} = \left(\sum \vec{F}\right) \Delta t \quad \text{constant force}$$

$$\vec{J} = \int\limits_{t_i}^{t_f} \sum \vec{F}(t) \, dt \quad \text{time-varying force}$$

$$F_{\text{so},x} = -k(x-x_o) \quad \text{small displacement}$$

work

$$\Delta E_{\rm mech} = \Delta K + \Delta U = W \quad \leftarrow \text{not closed} \qquad \Delta U_{\rm spring} = \frac{1}{2} k \left(x - x_o \right)^2$$

$$P = \frac{dE}{dt} \quad P = F_{\rm ext,x} \, v_x \quad \text{one dimension}$$

$$W = \left(\sum \vec{F} \right) \Delta x_F \quad \text{constant foce 1D}$$

$$W = \sum_n \left(F_{\rm ext,x} \, \Delta x_{Fn} \right) \quad \text{const nondiss., many particles, 1D}$$

$$W = \int_{x_i}^{x_f} F_x(x) \, dx \quad \text{nondiss. force, 1D}$$

$$(F_{12}^s)_{\rm max} = \mu_s F_{12}^n \quad \text{static} \qquad F_{12}^k = \mu_k F_{12}^n \quad \text{kinetic}$$

$$W = \vec{F} \cdot \Delta \vec{r}_F \quad \text{const non-diss force}$$

$$W = \int_{\vec{r}_i}^{\vec{r}_f} \vec{F}(\vec{r}) \cdot d\vec{r} \quad \text{variable nondiss force}$$

sundry bits

Power	Prefix	Abbreviation
10^{-9}	nano	n
10^{-6}	micro	μ
10^{-3}	milli	m
10^{-2}	centi	\mathbf{c}
10^{3}	kilo	k
10^{6}	mega	M
10 ⁹	giga	G

Derived unit	Symbol	equivalent to
newton	N	$kg \cdot m/s^2$
joule	J	$kg \cdot m^2/s^2 = N \cdot m$
watt	W	$\rm J/s{=}m^2{\cdot}kg/s^3$