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Exam II practice

1. A uniformly dense rope of length b and mass per unit length λ is coiled on a smooth table. One end is
lifted by hand with constant velocity vo. Find the force of the rope held by the hand when the rope is a
distance a above the table (b>a).

Find: The force a rope exerts on a hand pulling it upward off of a table, as a function of position. The hand
will have to pull against the rope’s weight, but also against the changing momentum of the rope as more of
it leaves the table.

Given: The length b and linear mass density λ, the constant velocity at which the rope is pulled.

Sketch: We want to know the total force between the hand and rope when a length a of the rope has been
pulled off of the table at constant speed vo.

a

dx

v0

x

Take a small segment of rope dx a height x off of the table, as shown in the sketch above, with the +x
direction being upward. This small segment has mass dm=λdx, and was pulled off of the table at constant
velocity vo. Just before the segment was pulled off of the table, it was simply lying there with zero velocity
and hence zero momentum. An instant later, it is moving away from the table at velocity vo, which clearly
implies a non-zero momentum. This means that during the time dt it took to pull the segment dx off of the
table completely, its momentum changed from 0 to pf . This time rate of change of momentum is a force.
Relevant equations: The main equation we will need is that force is the time rate of change of momentum:

~F =
d~p

dt

Additionally, we need to know the weight of an arbitrary length of rope. Take a small section of rope of
length a. Since the mass per unit length of the rope is λ, the mass of that segment must be λa, and its
weight λgdx.

Symbolic solution: Consider again our segment of rope dx. It has mass dm and velocity vo just after it
leaves the table, and zero velocity just before. The momentum change dp in pulling that segment of rope off
of the table is
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dp = vodm = voλdx

If this segment took dp to pull off of the table, we can easily find the time rate of change of momentum by
dividing by dt:

dp

dt
= voλ

dx

dt
= v2

oλ

Here we used the fact that dx/dt is simply the velocity of the rope, which were are given as vo. This is the
impulse force that brings the string off the table, and which also acts on the hand pulling it off of the table.
This impulse force is independent of how much rope is already off of the table, which makes sense: it only
involves changing the momentum of an infinitesimal bit of rope at one instant, and does not depend on what
the rest of the rope is doing. Since the bit of rope changes its velocity from zero to straight upward, the
impulse that the hand feels must act in the downward direction by Newton’s third law. That is, the force
acting on the hand Fi must be equal and opposite of the impulse force acting on the rope, which is equal to
the rope’s time rate of change in momentum:

Fi = −dp
dt

= −v2
oλ

In addition to the impulse, the hand must also support the weight of the string already off of the table. A
length a of the rope must have mass λa, and therefore the hand must support a weight of W = −λga, also
acting downward. The total force on the hand is this weight plus the impulse force:

Ftot = W + Fi = −λga− λv2
o = −λga

(
1 +

v2
o

ag

)
Numeric solution: Once again, there are no numbers given.
Double check: Dimensionally, our answer is correct. Checking each term in our force balance, noting that
λ must have units of kilograms per meter

λga =
[
kg m−1

] [
m s2

]
[m] =

[
kg m/s2

]
= [N]

λv2
o =

[
kg m−1

] [
m2 s2

]
= [N]

Our answer also makes sense qualitatively: both the impulse and weight force should get larger as λ increases
(i.e., as the rope gets heavier). As the total length of rope above the table a increases, the weight should
increase while the impulse force remains constant, which also makes sense. Finally, the impulse force should
increase as the pulling speed vo increases, while the weight should be unaffected.

2. Block 1 of mass m1 is moving rightward at v1 while block 2 of mass m2 is moving rightward at v2<v1.
The surface is frictionless, and a spring of constant k is fixed to block 2. When the blocks collide, the
compression of the spring is maximum the instant the blocks have the same velocity.

(a) Show that

∆K = K1i +K2i −K12 =
1
2
µv2

rel with µ =
m1m2

m1 +m2
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where K1i and K2i are the kinetic energies of blocks 1 and 2 before the collision, respectively, K12 is the
kinetic energy of the system at the moment the spring compression is maximum, and vrel is the relative
velocity of the two blocks. The quantity µ is known as the reduced mass of the system.

(b) Find the maximum compression of the spring.

1 2
k

Just for fun, we will solve this one two ways: from the usual “laboratory frame” where we watch both blocks
from the floor, and a frame of reference where block 2 is stationary. The latter is quite a bit less messy
. . . but does require the foresight to think of it in the first place.

Find: The chance in kinetic energy of the blocks between the moment just before their collision and at the
moment the spring is at maximum compression, which is also the point at which the two blocks have equal
speeds. We must also find the maximum compression of the spring.

Given: A collision between two blocks, one of which has a spring connected to it. We know the block’s
initial speeds and the spring constant.

Sketch: We really don’t need anything beyond what is given.

Relevant equations: Owing to the spring force present, we cannot apply conservation of kinetic energy,
meaning we cannot use our equations for elastic collisions. However, since there is no friction, and we are not
asked to consider what happens after the spring reaches maximum compression,i we can use conservation of
total energy, including the spring’s potential energy Us:

K1i +K2i = K12 + Us

We can also use conservation of momentum, as always. Using the same subscript labels as above,

p1i + p2i = p12

Symbolic solution, “laboratory frame:” Initially, both blocks have kinetic energy, and the spring is
uncompressed. At the moment of the spring’s maximum compression, both blocks move together at the
same speed, so we may treat them as a single block of mass m1 +m2 moving at velocity v. The spring will
be compressed by an amount x at this moment, and hence stores potential energy Us = 1

2kx
2. Our energy

balance is thus:
iPresumably, any energy losses due to destroying the blocks would occur just after this moment.
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Ei = K1i +K2i =
1
2
m1v

2
1 +

1
2
m2v

2
2

Ef = K12 + Us =
1
2

(m1 +m2) v2 +
1
2
kx2

Equating the initial and final energies, we see that the ∆K we desire is the same as the spring’s potential
energy.

∆K = K1i +K2i −K12 =
1
2
m1v

2
1 +

1
2
m2v

2
2 −

1
2

(m1 +m2) v2 = Us =
1
2
kx2

Once we find an expression for ∆K, we have the spring’s compression. We can also apply conservation of
momentum to this end:

p1i + p2i = p12

m1v1 +m2v2 = (m1 +m2) v

=⇒ v =
m1v1 +m2v2
m1 +m2

= vcom

We should not be surprised by this result . . . inserting our result for v into the our expression for ∆K
eventually gives use the answer we seek.

∆K =
1
2
m1v

2
1 +

1
2
m2v

2
2 −

1
2

(m1 +m2) v2

∆K =
1
2
m1v

2
1 +

1
2
m2v

2
2 −

1
2

(m1 +m2)
[
m1v1 +m2v2
m1 +m2

]2
2∆K = m1v

2
1 +m2v

2
2 −

(m1v1 +m2v2)2

m1 +m2

2∆K =
(m1 +m2)

(
m1v

2
1 +m2v

2
2

)
−
(
m2

1v
2
1 + 2m1m2v1v2 +m2

2v
2
2

)
m1 +m2

2∆K =
m2

1v
2
1 +m1m2v

2
2 +m1m2v

2
1 +m2

2v
2
2 −m2

1v
2
1 − 2m1m2v1v2 −m2

2v
2
2

m1 +m2

2∆K =
m1m2

(
v2
1 + v2

2 − 2v1v2
)

m1 +m2
=

m1m2

m1 +m2
(v1 − v2)2

=⇒ ∆K =
1
2
µv2

rel

We can now easily find the spring’s maximum compression:

∆K =
1
2
kx2 =⇒ x =

√
µ

k
vrel

Symbolic solution, frame where block 2 is still: Here we imagine we are sitting on block 2 and
watching the collision. This is a sensible frame to pick, since our desired result includes only the relative
velocity anyway. In this frame of reference, the velocity of block 1 relative to block 2 is v1 − v2 = vrel, and
the velocity of block 2 is zero (since it is our reference point). The velocity of both blocks at the moment of
maximum spring compression is then v− v2, where v is the velocity of the two-block system with respect to
the ground. Our kinetic energy balance is then
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K1i =
1
2
m1 (v1 − v2)2 K12 =

1
2

(m1 +m2) (v − v2)2

Momentum conservation is similarly straightforward, and gives us another expression for v − v2

m (v1 − v2) = (m1 +m2) (v − v2) =⇒ v − v2 =
m1

m1 +m2
(v1 − v2)

Defining the kinetic energy change, and putting things together:

∆K =
1
2
m1 (v1 − v2)2 − 1

2
(m1 +m2) (v − v2)2

∆K =
1
2
m1 (v1 − v2)2 − 1

2
(m1 +m2)

[
m1

m1 +m2
(v1 − v2)

]2
∆K =

1
2

(v1 − v2)2
[
m1 −

m2
1

m1 +m2

]
=

1
2

(v1 − v2)2
[
m2

1 +m1m2 −m2
1

m1 +m2

]
∆K =

1
2

(v1 − v2)2
[
m1m2

m1 +m2

]
=

1
2
µv2

rel

The maximum compression of the spring is found in the same way as above.

Numeric solution: Perhaps you have noticed we are not big on numbers.

Double check: For the first part, we were simply asked to show that the result is true . . . which seems to have
worked out just fine. The second part relies only on conservation of energy and basic algebra. Qualitatively
makes some sense that the spring compression is found by relating the kinetic energy change to the spring’s
potential energy. As the mass of either block increases, the reduced mass µ increases monotonically (since
mass is always positive), and thus x increases, which is a sensible result.

3. A spring with a pointer attached is hanging next to a scale marked in millimeters. Three different
packages are hung from the spring, in turn, as shown below. (a) Which mark on the scale will the pointer
indicate when no package is hung from the spring? (b) What is the weight W of the third package?

110 N

240 N

W

mm mm mm
0 0 0

40

60

30

Find: The weight of the unknown third package and equilibrium position of the spring.

Given: The position of the spring for two different known weights.
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Sketch: The given sketch will be sufficient.

Relevant equations: We only need the weights of the first two packages and the force equation for a spring.
Let the three packages have weights W1, W2 and W3

W1 = 110 N W2 = 240 N W3 =?

The spring will respond with a force F when displaced a distance x from its equilibrium position xeq

F = −k (x− xeq)

Symbolic solution: The weights of a given package must equal the restoring force of the spring. When
weight i is hung from the spring, it will stretch by an amount xi from equilibrium:

Wi = k (xi − xeq)

The ratio of the weights of the first two packages gives us an equation with only xeq as an unknown:

W1

W2
=
x1 − xeq

x2 − xeq

W1x2 −W1xeq = W2x1 −W2xeq

(W2 −W1) = W2x1 −W1x2

=⇒ xeq =
W2x1 −W1x2

W2 −W1

Given the equilibrium distance, subtracting the weight of the first two packages yields the spring constant,
which we can use to find the weight of the third package:

W2 −W1 = kx2 − kx1

k =
W2 −W1

x2 − x1

This makes sense – the distance the spring expands on changing the weight from W1 to W2 is x2 − x1, the
force constant must be the ratio of this difference in force to the extra expansion distance. The weight of
the third package is now readily found from the expressions for k and xeq.

W3 = k (x− xeq) =
(
W2 −W1

x2 − x1

)[
x3 −

(
W2x1 −W1x2

W2 −W1

)]
Numeric solution: Given W1 =110 N and W2 =240 N along with x1 =0.04 m, x2 =0.06 m, and x3 =0.03 m,

xeq =
W2x1 −W1x2

W2 −W1
≈ 23 mm

W3 =
(
W2 −W1

x2 − x1

)[
x3 −

(
W2x1 −W1x2

W2 −W1

)]
≈ 45 N

Double check: You can verify easily that all of our expressions have the correct units. Clearly, package 3
must weigh less than either package 1 or 2, since it causes less expansion of the spring.
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We can also approach this problem in a less formal manner, relying only on the fact that ideal springs have
a linear force-displacement response. The difference in weight between packages 1 and 2 is 130 N and causes
0.02 m of extra expansion, meaning the spring should have a force constant of 6500 N/m. Package 3 stretches
the spring by 0.01 m less than package 1, meaning it must weigh 65 N less than package 1, or 45 N. This is
in the end exactly what our equations above tell us, we really only short-circuited the step of finding the
equilibrium distance by subtracting displacements.

4. In the figure below, puck 1 of mass m1 =0.20 kg is sent sliding across a frictionless lab bench, to undergo
a one-dimensional elastic collision with stationary puck 2. Puck 2 then slides off the bench and lands a
distance d from the base of the bench. Puck 1 rebounds from the collision and slides off the opposite edge
of the bench, landing a distance 2d from the base of the bench. What is the mass of puck 2?

1 2

2d d

We want the mass of the second puck. The two pucks undergo an elastic collision, with the second block
initially at rest, and after the collision both pucks slide off the frictionless bench. The motion off of the
bench is therefore projectile motion, with a purely horizontal velocity determined by the final velocities after
the collision.

We can approach this by by conservation of energy. Initially, the total energy of the system is only the kinetic
energy of the first puck, if we let the bench’s surface be our zero for potential energy. After the collision, but
before the pucks fall off of the bench, the total energy is the kinetic energy of both pucks. Between these
two moments, the system’s energy must be conserved, since the collision is elastic and there is no friction.

K1i =
1
2
m1v

2
1i = K1f +K2f =

1
2
m1v

2
1f +

1
2
m1v

2
2f

After the collision, we also know that puck 2’s speed is half that of puck 1, since it travels only half as far
off the table!

2|v2f | = |v1f |

Thus,

1
2
m1v

2
1i =

1
2
m1v

2
1f +

1
2
m1v

2
2f =

1
2
m1v

2
1f +

1
8
m1v

2
1i =

(
m1 +

1
4
m2

)
v2
1f(

v1i
v1f

)2

=
4m1 +m2

4m1

Our collision equation also yields an expression for v1i/v1f :
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v1i
v1f

=
m1 +m2

m1 −m2

Thus,

4m1 +m2

4m1
=
(
m1 +m2

m1 −m2

)2

4m1 +m2

4m1
=
m2

1 + 2m1m2 +m2
2

m2
1 − 2m1m2 +m2

2

4m3
1 + 8m2

1m2 + 4m1m
2
2 = 4m3

1 − 8m2
1m2 + 4m1m

2
2 +m2

1m2 − 2m1m
2
2 +m3

2

16m2
1 = m2

2 +m2
1 − 2m1m2 (m2 6= 0)

0 = 15m2
1 + 2m1m2 −m2

2

=⇒ m1 =
−2m2 ±

√
4m2

2 + 4m2
2 (15)

30
=
−2m2 ±

√
64m2

2

30
=
(
−2± 8

30

)
m2 =

{
1
5
,−1

3

}
m2

m2 = 5m1 = 1 kg

We have rejected the m2<0 solution above as being silly.

5. A bullet of mass m is fired into a block of mass M initially at rest at the edge of a frictionless table of
height h as in the figure below. The bullet remains in the block, and after impact the block lands a distance
d from the bottom of the table. Determine the initial speed of the bullet in terms of given quantities.

First we must handle the collision - which is clearly elastic since the bullet sticks in the block - and then
we can use kinematics to find the initial velocity in terms of the masses and given distances. An inelastic
collision clearly does not conserve energy, but it still conserves momentum. Thus, equating momentum
before and after the collision (with the velocity of both objects just after the collision as vf ),

vim = (M +m) vf (1)

vf =
(

m

M +m

)
vi (2)

If the block and bullet are launched off of the table horizontally, we know that the time t for it to reach the
ground is the same for any other falling object. Given a starting height h, we know h= 1

2gt
2. In this time

t, it will travel a horizontal distance d= vf t, so t=d/vf . Putting these bits together, and substituting our
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expression for vf :

h =
1
2
gt2 =

1
2
g
d2

v2
f

=
1
2
gd2 (M +m)

m2

1
v2
i

(3)

v2
i =

gd2

2h

(
M +m

m

)2

(4)

vi = d

(
M +m

m

)√
g

2h
(5)

We can check the units to see if our answer is plausible:

[m
s

]
= [m]

√[ m

s2m

]
= [m/s] (6)

6. [From lecture] A uniform disk with mass M=2.5 kg and radius R=20 cm is mounted on a fixed horizontal
axle, as shown below. A block of mass m=1.2 kg hangs from a massless cord that is wrapped around the rim
of the disk. Find the acceleration of the falling block, the angular acceleration of the disk, and the tension
in the cord. Note: the moment of inertia of a disk about its center of mass is I= 1

2MR2.

m

M

We can first analyze the forces on the mass m. There is the weight of the mass pulling downward, and the
tension T upward. Presuming the acceleration a to be downward,

∑
F = T −mg = −ma (7)

T = m (g − a) (8)

Next, we must deal with the pulley. The tension provides a force T pulling at a distance R from the center
of rotation at a right angle, giving rise to a torque TR. Since the torque causes a clockwise rotation, it is by
convention negative. Letting the moment of inertia of the pulley be kMR2,

∑
τ = −TR = Iα (9)

If the rope does not slip on the pulley, then the linear acceleration of the rope must be the same as the linear
acceleration of the pulley at the point it meets the rope, i.e., on the rim at distance R from the center of
rotation. That means a=Rα, and now we have two expressions involving a, from which we may eliminate
the tension:
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Iα = kMR2
( a
R

)
= −RT (10)

T = −kMa (11)

With k= 1
2 for a disc, T =− 1

2Ma. Now we can find the acceleration,

a =
T

m
− g = −kMa

m
− g (12)

a

(
1 +

kM

m

)
= g (13)

a =
g

1 + kM
m

=
mg

m+ kM
(14)

With k= 1
2 for a disc,

a =
mg

m+ kM
=

2mg
2m+m

≈ −4.8 m/s2 (15)

T = −1
2
Ma ≈ −6 N (16)

α =
a

R
≈ −24 rad/s2 (17)

7. A long uniform rod of length L and mass M is pivoted about a horizontal, frictionless pin through one
end. The rod is released from rest in a vertical position. At the instant the rod is horizontal, find its angular
speed. The moment of inertia of a solid rod about its center of mass is I = 1

12ML2.
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A long uniform rod of length L and mass M is pivoted
about a horizontal, frictionless pin through one end. The
rod is released from rest in a vertical position, as shown in
Figure P10.61. At the instant the rod is horizontal, find
(a) its angular speed, (b) the magnitude of its angular ac-
celeration, (c) the x and y components of the acceleration
of its center of mass, and (d) the components of the reac-
tion force at the pivot.

61.

62. A shaft is turning at 65.0 rad/s at time t ! 0. Thereafter, its
angular acceleration is given by

where t is the elapsed time. (a) Find its angular speed at
t ! 3.00 s. (b) How far does it turn in these 3 s?

63. A bicycle is turned upside down while its owner repairs a
flat tire. A friend spins the other wheel, of radius 0.381 m,
and observes that drops of water fly off tangentially. She
measures the height reached by drops moving vertically
(Fig. P10.63). A drop that breaks loose from the tire on
one turn rises h ! 54.0 cm above the tangent point. A
drop that breaks loose on the next turn rises 51.0 cm
above the tangent point. The height to which the drops
rise decreases because the angular speed of the wheel de-
creases. From this information, determine the magnitude
of the average angular acceleration of the wheel.

" ! #10.0 rad/s 2 # 5.00t rad/s3,

xPivot

L

y

Figure P10.61

h

Figure P10.63 Problems 63 and 64.

64. A bicycle is turned upside down while its owner repairs a
flat tire. A friend spins the other wheel, of radius R, and
observes that drops of water fly off tangentially. She mea-
sures the height reached by drops moving vertically (Fig.
P10.63). A drop that breaks loose from the tire on one
turn rises a distance h1 above the tangent point. A drop
that breaks loose on the next turn rises a distance h2 $ h1
above the tangent point. The height to which the drops
rise decreases because the angular speed of the wheel de-
creases. From this information, determine the magnitude
of the average angular acceleration of the wheel.

65. A cord is wrapped around a pulley of mass m and radius r.
The free end of the cord is connected to a block of mass
M. The block starts from rest and then slides down an in-
cline that makes an angle % with the horizontal. The coeffi-
cient of kinetic friction between block and incline is &. 
(a) Use energy methods to show that the block’s speed as a
function of position d down the incline is

(b) Find the magnitude of the acceleration of the block in
terms of &, m, M, g, and %.

66. (a) What is the rotational kinetic energy of the Earth
about its spin axis? Model the Earth as a uniform sphere
and use data from the endpapers. (b) The rotational ki-
netic energy of the Earth is decreasing steadily because of
tidal friction. Find the change in one day, assuming that
the rotational period decreases by 10.0 &s each year.

67. Due to a gravitational torque exerted by the Moon on the
Earth, our planet’s rotation period slows at a rate on the
order of 1 ms/century. (a) Determine the order of magni-
tude of the Earth’s angular acceleration. (b) Find the 
order of magnitude of the torque. (c) Find the order of
magnitude of the size of the wrench an ordinary person
would need to exert such a torque, as in Figure P10.67.
Assume the person can brace his feet against a solid 
firmament.

v ! √ 4gdM(sin % # & cos %)
m ' 2M

Figure P10.67

This is most easily approached by conservation of energy. The center of mass of the rod moves through
a vertical distance L/2, so the rod’s gravitational potential energy changes by MgL/2. This must be
accompanied by a change in rotational kinetic energy of 1

2Iω
2. For a thin rod about its endpoint, I= 1

3ML2.
Thus,

∆K =
1
2
Iω2 =

1
2

1
3
ML2ω2 = −∆U =

1
2
MgL (18)

ω =

√
3g
L

(19)

One could then find the linear speed of the tip by noting that v=ωR, and R=L at the end of the rod.
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8. [Note that rolling motion is not covered on exam 2.] A uniform ball of mass M and radius R rolls
smoothly down a ramp at angle θ. The center of the ball starts at a vertical height h from the bottom of
the ramp. How long does it take the ball to reach the bottom of the ramp?

If the center of the ball starts at a vertical height h, the center of mass of the ball moves through a height
h−R. The distance traveled down the ramp you can verify by trigonometry is d= h−R

sin θ . The acceleration
down the ramp will be constant, since it is only provided by gravity, so if we can find the speed at the bottom
we can infer the time.

Conservation of energy gets us the speed. The rotational kinetic energy will be 1
2Iω

2 at the bottom. For
rolling motion we know that ω= v/R, and I is the moment of inertia about the center of mass, which we
assume is kMR2. Since the starting energy is purely potential and the final purely kinetic,

mg (h−R) =
1
2
Iω2 +

1
2
Mv2 =

1
2
kMR2 v

2

R2
+

1
2
Mv2 (20)

v2 (M + kM) = 2mg (h−R) (21)

v =

√
2mg (h−R)
M (k + 1)

(22)

With k= 2
5 for a sphere,

v =

√
10mg (h−R)

7M
(23)

If the ball reached this velocity from rest under uniform acceleration, we know that v2
f =2ad, or a=v2

f/2d,
and we also know d= 1

2at
2. Thus,

t =

√
2d
a

=

√
4d2

v2
f

=
2d
vf

=
2 (h−R)

sin θ

√
m (k + 1)

2mg (h−R)
(24)

t =

√
2 (k + 1) (h−R)

g sin2 θ
=

√
14 (h−R)
5g sin2 θ

(25)
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