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Rolling, Torque, Angular Momentum

1. Halliday, Resnick, & Walker, problem 11.14

Solution: Our sphere starts out at point A in the sketch below already undergoing smooth rolling motion,
with center of mass velocity vi. Since the sphere rolls without slipping, its angular and linear velocities must
be related by the sphere’s radius R, vi =Rω. We can apply conservation of mechanical energy to find the
sphere’s velocity at point B. Let the zero of gravitational potential energy be the lowest level in the diagram
(the height of point A). At A, the total mechanical energy is purely kinetic, with both linear and rotational
terms:
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At point B, we also have translational and rotational kinetic energy, characterized by linear and angular
velocities vb and ωb, respectively. We still have vb=Rωb, since the motion is purely rolling without slipping.
We also have now a gravitational potential energy mgh1, and

KB + UB =
1
2
v2
b
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R2

)
+mgh1

Applying conservation of energy between A and B, we can solve for vi:

KA + UA = KB + UB
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We need only an expression for vb. At point B, the sphere is launched from height h2 above the far right
platform, and it behaves just as any other projectile. In the absence of air resistance, the rate of rotation
ω will not change from B to C, and we can therefore ignore the rotational motion. The sphere covers a
horizontal distance d in a time t after being launched horizontally at vb, and it covers a vertical distance h2

in the same time t under the influence of gravity. Thus,
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d = vbt

−h2 = −1
2
gt2

=⇒ vb = d

√
g

2h2

Using this result in our expression above, and noting I= 2
5mr

2 for a solid sphere,

v2
i = v2

b +
2mgh1

m+ I/R2
=
d2g

2h2
+

2mgh1

m+ I/R2

v2
i =

d2g

2h2
+

2mgh1

m+ 2
5m

=
d2g

2h2
+

2gh1
7
5

=
d2g
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+
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7
gh1

vi =

√
d2g

2h2
+

10
7
gh1 ≈ 1.34 m/s

2. Halliday, Resnick, & Walker, problem 11.16

Solution: First, a simple sketch for reference:

h1

h2

d

A

B

C

Once again, we need only apply conservation of energy. The object starts out at A with only gravitational
potential energy, and at B has gained rotational and translational kinetic energy. Since we have rolling
motion without slipping, we can relate linear and angular velocities at B via v = Rω. Let the zero for
gravitational potential energy by the lowest level in the figure (that of C). Conservation of energy between
A and B yields:

mgH =
1
2
mv2 +

1
2
Iω2 +mgh

mg (H − h) =
1
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1
2
I
v2
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=
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=
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1
2
mv2 (1 + β)

1 + β =
2g (H − h)

v2

β =
2g (H − h)
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− 1

We need only an expression for v. Just as in the previous problem, we can use the equations of projectile
motion.
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d = vt

−h = −1
2
gt2

=⇒ v = d

√
g

2h

Thus,

β =
2g (H − h)

v2
− 1 =

2g (H − h)
d2g

2h

− 1 =
4h (H − h)

d2
− 1 ≈ 0.25

3. Halliday, Resnick, & Walker, problem 11.41

Solution: Again, a quick sketch:

r2r

r

1 3
2

2’

The square is made up of four thin rods of length r, while the hoop has radius r. First, we calculate the
moment of inertia of the square. The first rod labeled “1” is on the axis of rotation. If its thickness is
negligible, its moment of inertia is essentially zero – all the mass is at distance zero from the axis of rotation.
The horizontal rods 2 and 2′ are both rotating about a distance r/2 from their center of mass, and thus

I2 = I2′ = Icom +m
(r

2

)2

=
1
12
mr2 +

1
4
mr2 =

1
3
mr2

The rod labeled 3 has all its mass located a distance r from the axis of rotation (still presuming the thickness
to be negligible), and thus its moment of inertia is the same as that of a particle of mass m a distance r
from the axis of rotation, I3 =mr2. In total,

I� = I1 + I2 + I2′ + I3 = 0 +
1
3
mr2 +

1
3
mr2 +mr2 =

5
3
mr2

Our hoop rotates a distance r from its center of mass, and thus

I◦ = Icom +mr2 =
1
2
mr2 +mr2 =

3
2
mr2

The total system then has

Itot = I� + I◦ =
(

5
3

+
3
2

)
mr2 =

19
6
mr2 ≈ 1.6 kg m2

The total angular momentum can be found from the moment of inertia and the angular velocity, the latter
of which can be found easily from the period of rotation:
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ω =
2π
T

L = Itotω =
2πItot
T

=
19πmr2

3T
≈ 4.0 kg m2/s

4. Halliday, Resnick, & Walker, problem 11.66

Solution: Again, a quick sketch. Let A be the starting point, B the moment of collision between the ball
and rod, and C the point when maximum height is reached by the rod + ball system. We approximate the
ball as a point mass, since we are told it is small (and we anyway have no way of calculating its moment of
inertia, since we do not have any geometrical details . . . ).

A

BC

m

M

hθl cos θ l

The velocity v of the ball at point B can be found using conservation of mechanical energy. Let the floor be
the height of zero gravitational potential energy.

KA + UA = KB + UB

mgh =
1
2
mv2

=⇒ v =
√

2gh

The collision is clearly inelastic, since the ball sticks to the rod. We could use conservation of linear momen-
tum, but this would require breaking up the rod into infinitesimal discrete bits of mass and integrating over
its length. Easier is to use conservation of angular momentum about the pivot point of the rod. Just before
the collision, we have the ball moving at speed v a distance l. Let ı̂ be to the right, and ̂ upward (making
k̂ into the page). The initial angular momentum is then

~L i = ~r × ~p = l ̂× (−mv ı̂) = −mvl (̂× ı̂) = mvl k̂ = ml
√

2gh k̂

After the collision, we have the rod and mass stuck together, rotating at angular velocity ω. Defining
counterclockwise rotation to be positive as usual, the final angular momentum is thus

~L f = Iω k̂

The total moment of inertia about the pivot point is that of the rod rotating plus that of the ball. The rod
rotates a distance l/2 from its center of mass, and again we approximate the ball as a point mass rotating
at a distance l (since we told it is small).

4



I = Irod + Iball = Irod, com +M

(
l

2

)2

+ml2 =
1
12
Ml2 +Ml2 +ml2 =

(
1
3
M +m

)
l2

Equating initial and final angular momentum, we can solve for the angular velocity after the collision:

Lf = Iω = Li = mvl = ml
√

2gh(
1
3
M +m

)
l2ω = ml

√
2gh

ω =
m
√

2gh(
1
3
M +m

)
l

At this point, we may use conservation of energy once again. When the system reaches its maximum angle
θ at C, the center of mass of the rod + ball system will have moved up by an amount ∆ycm. The change in
gravitational potential energy related to this change in center of mass height must be equal to the rotational
kinetic energy just after the collision. Thus,

1
2
Iω2 =

~L · ~L
2I

=
L2

2I
= (m+M) g∆ycm

Here we have noted that the rotational kinetic energy can be related to the angular momentum to save a bit
of algebra. To proceed, we must find the difference in the center of mass height between points C and B.
Let y=0 be the height of the floor. At point B,

ycm,B =
M

(
L

2

)
+m (0)

m+M
=
(
l

2

)(
M

m+M

)
At point C, the ball is now at a height l − l cos θ, while the center of mass of the rod (its midpoint) is now
at l − l cos θ + 1

2 l cos θ. Thus,

ycm,C =
M

(
l − l cos θ +

1
2
l cos θ

)
+m (l − l cos θ)

m+M
=
Ml

(
1− 1

2
cos θ

)
+ml (1− cos θ)

m+M

The change in center of mass height can now be found:

∆ycm = ycm,C − ycm,B =
Ml

(
1− 1

2
cos θ

)
+ml (1− cos θ)− 1

2
Ml

m+M

=

1
2
Ml (1− cos θ) +ml (1− cos θ)

m+M

=
l

m+M
(1− cos θ)

(
m+

1
2
M

)

Using our previous energy balance between B and C,

L2

2I
= (m+M) g∆ycm = lg (1− cos θ)

(
m+

1
2
M

)
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Since the initial and final angular momenta are equal, we may substitute either Lf or Li, the latter being
the easiest option. This is not strictly necessary – we could use Lf or even just grind through 1

2Iω
2 and the

result must be the same. However, using Li here saves quite a bit of algebra in the end when we try to put
θ in terms of only given quantities. Doing so, and solving for θ

L2
f

2I
=
L2
i

2I
=

2l2m2gh

2
(

1
3M +m

)
l2

= lg (1− cos θ)
(
m+

1
2
M

)
1− cos θ =

m2h

l
(

1
3M +m

) (
1
2M +m

)
θ = cos−1

[
1− m2h

l
(

1
3M +m

) (
1
2M +m

)] ≈ 32◦

Note that for m = 0, θ = 0, as we expect. On the other hand, for M = 0 we have cos θ = 1 − h/l = 1/2.
This means that the particle is at a height l − l cos θ= l/2=h at point C – exactly what we would expect if
mechanical energy were conserved!

5. Halliday, Resnick, & Walker, problem 11.65

Solution: A quick sketch.

θ

l
m1

m2

vi

m2

(a) Our dumbbell, consisting of two masses m2 both a distance l from its center of mass, is struck by a
smaller mass m1 traveling at velocity ~v i. Conservation of angular momentum can be used to find the angular
velocity after the collision. Before the collision, with ı̂ to the right and ̂ upward, we have the smaller mass’
momentum ~p i=−m1vi ̂ acting at a distance ~r = l ı̂ from the center of rotation.

~L i = ~r × ~p = −m1lvi k̂

The minus sign indicates a clockwise rotation following our usual convention, which is sensible. After the
collision, the entire system rotates clockwise at angular velocity ~ω =−ω k̂. The total moment of inertia is
found easily, since we have only point-like masses:

I =
∑
i

mir
2
i = m2l

2 +m2l
2 +m1l

2 = l2 (2m2 +m1)

The final angular momentum is then

~L f = I ~ω = −l2ω (2m2 +m1) k̂

Conservation of angular momentum gives us
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~ω =
Li
I

=
m1vi

(2m2 +m1) l
k̂ ≈ 0.15 rad/s k̂

(b) The initial kinetic energy of the system is only that of the smaller mass, Ki= 1
2m1v

2
i . The final kinetic

energy is the rotational kinetic energy of the whole system, which is simplified a bit in terms of angular
momentum

Kf =
1
2
Iω2 =

~L · ~L
2I

=
L2
i

2I
=

m2
1l

2v2
i

2l2 (2m2 +m1)
=

1
2
m1v

2
i

(
m1

2m2 +m1

)
= Ki

(
m1

2m2 +m1

)
Note that since angular momentum is conserved, we can use either Li or Lf in the kinetic energy equation;
using Li is somewhat simpler algebraically. The ratio of final to initial kinetic energies is thus

Kf

Ki
=

m1

2m2 +m1
≈ 0.0123

(c) What happens once the system starts rotating? Even without the initial kinetic energy of the smaller
mass, since all forces present after the collision are conservative the whole system would have enough energy
to rotate through 180◦, since that would put all of the masses back at the same height. The gravitational
potential energy of the system right after the collision is the same as that after rotating through 180◦, so
the system must rotate at least that much.

After rotating through 180◦, the total mechanical energy of the system is unchanged from the point right
after the collision. The system will continue rotating through a further maximum angle θ at which point
the gain in potential energy equals the kinetic energy right after the collision, Kf . As the system rotates,
one of the m2 masses will go up by an amount h= l sin θ, and the other m2 mass will go down by the same
amount. The only change in potential energy comes from the smaller m1 mass moving up by h! We can
balance mechanical energy between configurations right after the collision, after rotating through 180◦, and
after rotating through an additional angle θ. Let the initial horizontal axis of the dumbbell be the zero of
potential energy.

after collision: K + U = Kf

after rotating through 180◦: K + U = Kf

after an additional rotation by θ: K + U = m2gl sin θ +m1gl sin θ −m2gl sin θ = m1gl sin θ

conservation of mechanical energy =⇒ m1gl sin θ = Kf =
m2

1v
2
i

2 (2m2 +m1)

sin θ =
m1v

2
i

2gl (2m2 +m1)

θ = sin−1

[
m1v

2
i

2gl (2m2 +m1)

]
≈ 1.3◦

The total angle of rotation is thus 180◦ + 1.3◦=181.3◦.

Oscillations

6. Halliday, Resnick & Walker Problem 15.37: mass hanging from a spring.
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Our mass starts out at position yi, corresponding to the un-stretched length of the spring. When released, its
lowest position is 2∆y= 10 cm below yi during the subsequent oscillations. This means that the amplitude
of the simple harmonic motion is ∆y, symmetric about an equilibrium position yeq – both yi and the lowest
point in the motion are ∆y from yeq. For convenience, let the equilibrium position be our origin, yeq = 0,
with the ̂ direction being upward. With this choice, yi = ∆y is the amplitude of harmonic motion. Make
use of the figure below.

k

myi

∆y

∆y
yeq =0

(a) We can find the frequency of oscillation by considering the forces acting on the mass, which are only
gravity and the spring restoring force. If the mass moves a distance y from equilibrium,

ma = mg − ky

At the equilibrium position, the string is stretched by an amount ∆y compared to its natural length, and
a=0:

mg = k∆y =⇒ k

m
=

g

∆y

In principle, we can now must use f = (2π)−1
√
k/m to find the frequency of oscillation. However, should

we be concerned whether our solution to simple harmonic motion is valid in the presence of an additional
constant force (i.e., gravity)? Our force balance equation, suitably rearranged, reads

d2y

dt2
+
k

m
y − g = 0

Without the additional constant gravitational acceleration, we would have our equation for simple harmonic
motion. A simple substitution will recover the usual equation for simple harmonic motion, for which we
know the solution. Let y′ = y − mg/k, which gives d2y′/dt2 = d2y/dt2. Making the substitution in our
equation above,

d2y′

dt2
+
k

m
y′ + g − g =

d2y′

dt2
+
k

m
y′ = 0

We have recovered the standard equation of motion for a simple harmonic oscillator, and thus the presence
of an additional constant force serves only to shift the origin by an amount mg/k. This shift leaves the
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frequency of oscillation unchanged at f = (2π)−1
√
k/m. The substitution we made physically corresponds

to shifting the equilibrium position downward by an amount mg/k – exactly how far the mass pulls the
spring down once it is attached. This shift is just a choice of origin so far as the equations are concerned,
the physics is unchanged. In the end, we are justified in using our beloved equations of simple harmonic
motion, so long as we choose our origin at the new equilibrium position yi−mg/k, which we have already done!

With our now-justified solution the numbers given,

f =
1

2π

√
k

m
=

1
2π

√
g

∆y
≈ 2.2 Hz

Recall that units of s−1 are commonly called Hertz, abbreviated Hz.

(b) When the mass is 8 cm below its initial position, what is its speed? There are several ways to go about
this.

Conservation of Energy: First, and perhaps most straightforwardly, we can use conservation of mechanical
energy. Let the position of interest at 8 cm be yf . At the starting position of the mass, yi, we have only
the gravitational potential energy of the mass, since the mass is at rest and the spring is un-stretched. At
position yf , the mechanical energy consists of three parts: the new gravitational potential energy, the kinetic
energy of the mass, and the potential energy of the now stretched spring. For the latter term, it is key to
remember that the spring has been stretched by an amount yi−yf , since it started at its un-stretched length
at yi.i Writing down all the requisite energy terms, it is no big trick to solve for v

mgyI = mgyf +
1
2
mv2 +

1
2
k (yi − yf )2

1
2
mv2 = mg (yi − yf )− 1

2
k (yi − yf )2

v2 = 2g (yi − yf )− k

m
(yi − yf )2

(
note

k

m
=

g

∆y

)
v =

√
2g (yi − yf ) +

g

∆y
(yi − yf )2

Noting that we are told yi − yf =8 cm and ∆y=5 cm (and converting everything to meters),

v = ±0.56 m/s

The ± in this case is physically meaningful – at 8 cm below the starting position, the mass can be going
either upward or downward with the same speed.

Equation of Motion: Since we have established that our hanging mass follows simple harmonic motion,
we know the general solution for y(t):

y(t) = A cosωt+B sinωt

iBe careful that in the present case the equilibrium position is not the un-stretched position, and therefore not the position
of zero spring potential energy.
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From y(t), we can readily find v=dy/dt, we need only find the time at which y(t) corresponds to the given
position. If the mass starts at rest at yi, our boundary conditions are y(0) = 0 and v(0) = 0. Our general
solution then becomes

y(t) = yi cosωt

in order to be consistent with our boundary conditions. At what time does y(t) correspond to the point of
interest? The mass starts out at yi=5 cm above equilibrium. That means that the position of interest, 8 cm
below yi, is then 3 cm below equilibrium. Thus, we are interested in the time to such that y(to) =−3 ≡ yf

(since ̂ is upward).

yf = yi cosωto

to =
1
ω

cos−1

[
yf
yi

]

The velocity is now easily found:

v(t) =
dy

dt
= −ωyi sinωt

v(to) = −ωyi sin
[
cos−1

(
yf
yi

)]
= −ωyi

√
1−

(
yf
yi

)2

= −ω
√
y2
i − y2

f

= −2πf
√
y2
i − y2

f ≈ 0.56 m/s

Note that we used the identity sin
[
cos−1 x

]
=
√

1− x2 here. Also note that this is simply the equation of an
ellipse, which leads us to our next method . . .

Phase space relationships: As we discussed in class, for the general simple harmonic motion solution

y(t) = C cos (ωt+ δ)

The allowed values of position y and momentum p for our oscillator satisfy the equation of an ellipse:

y2

C2
+

p2

m2ω2C2
= 1

That is, position and momentum are conjugate variables, and their values are linked. Since we know the
position of interest y, there are at most two possible momenta, which will differ only by a sign. Noting that
in the present case our boundary conditions give C=yi, and using p=mv

1− y2

y2
i

=
m2v2

m2ω2y2
i

=
v2

ω2y2
i

v2 = ω2y2
i

(
1− y2

y2
i

)
= ω2

(
y2
i − y2

f

)
v = ±ω

√
y2
i − y2

f = ±2πf
√
y2
i − y2

f
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Precisely the same solution, quite a bit faster.

(c) We are told that the addition of a 0.3 kg mass halves the frequency of oscillation. If the original mass is
m1, and the new mass is m2 =0.3 kg, the original frequency is

fo =
√

k

m1

The new frequency is determined by the total mass, now m1 +m2:

f =
1
2
fo =

√
k

m1 +m2

Combining, and solving for m1,

1
2
fo =

1
2

√
k

m1
=
√

k

m1 +m2

k

4m1
=

k

m1 +m2

k (m1 +m2) = 4km1

3m1 = m2 =⇒ m1 =0.1 kg

(d) The new equilibrium position is found just like the original equilibrium position: the total weight
balances the spring’s restoring force. Let the new equilibrium position be a distance y′eq below the original
equilibrium:

ky′eq = (m1 +m2) g

y′eq =
g

k
(m1 +m2) =

g∆y
m1g

(m1 +m2)
(

note k =
m1g

∆y

)
=
(
m1 +m2

m1

)
∆y = 4∆y (note 3m1 = m2)

≈ 0.2 m

7. Halliday, Resnick & Walker Problem 15.55 (HW 11)

In the end, we only have a physical pendulum, and the period is given by

T = 2π

√
I

mgh

where I is the moment of inertia of the rod (of mass m) about the pivot point, and h is the distance between
the rod’s center of mass and the pivot point. Let the pivot be a distance x from the end of the rod, making
it a distance l/2−x from the center of mass. The moment of inertia is then

I = Icom +m

(
l

2
− x
)2

=
1
12
ml2 +m

(
l

2
− x
)2

The distance between the center of mass and the pivot is h= l/2−x, so

11



I =
1
12
ml2 +mh2

The period is thus

T = 2π

√
1
12 l

2 + h2

gh
= 2π

√
l2

12gh
+
h

g

We wish to find x such that T is a maximum, which means dT/dx=0. Noting that dT/dx=−dT/dh,

dT

dx
= −dT

dh
= 0

d

dh

2π

√
1
12 l

2 + h2

gh

 = 0

2π
(

1
2

)(
−l2

12gh2
+

1
g

)( 1
12 l

2 + h2

gh

)−1/2

= 0

=⇒ −l2

12gh2
+

1
g

= 0

12h2 = l2

h =
l

2
√

3
≈ 0.29l

A quick second derivative test or a plot of dT/dh verifies that this is indeed a minimum, not a maximum.
The minimum period is therefore

Tmin = T

∣∣∣∣
h= l

2
√

3

= 2π

√√√√ 1
12 l

2 + 1
12 l

2

g l
2
√

3

= 2π

√
l√
3g
≈ 2.26 s

(b) Given T ∝
√
l, the period increases as l increases.

(c) The period is independent of m, and remains unchanged as m increases.

8. Halliday, Resnick & Walker Problem 15.100

The mechanical energy in this case consists of rotational kinetic energy, translational kinetic energy, and
potential energy stored in the spring. Let x= 0 correspond to the un-stretched length of the spring, which
is also the equilibrium position of this system. The total mechanical energy is

Etot = K + U = Kt +Kr + Us =
1
2
mv2 +

1
2
Iω2 +

1
2
kx2

Before we proceed, one aside: if a circular object is rolling smoothly, the frictional force plays no roll -
essentially, at each instant in time it is a different bit of the circular surface contacting the ground. Friction
only imparts a retarding force and dissipates energy from the system when there is sliding involved. See
http://webphysics.davidson.edu/faculty/dmb/py430/friction/rolling.html for a good explanation.
Basically, pure rolling involves no work done by friction, so we are justified in writing the total energy as we
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have above.

In the case of pure rolling, we can relate the linear velocity of the center of mass v and the angular velocity
ω through the radius of the cylinder, v=rω. Substituting for ω above, and noting I=kmr2 in general (with
k=1/2 in the present case)

Etot =
1
2
mv2 +

1
2
Iω2 +

1
2
kx2

=
1
2
mv2 +

1
2
(
kmr2

) (v
r

)2

+
1
2
kx2

=
(
k + 1

2

)
mv2 +

1
2
kx2

= (k + 1)Kt +
1
2
kx2

We are told the maximum displacement is xmax = 1
4 m. At maximum displacement, both kinetic terms are

zero, and the energy is purely potential:

1
2
kx2

max = Etot =
3
32

J

On the other hand, at the equilibrium position, the energy is entirely kinetic. Since the only relevant forces
are conservative (having established friction plays no role), mechanical energy is conserved, at equilibrium

Kr +Kt = (k + 1)Kt = Etot

(
k =

1
2

)
=⇒ Kt =

Etot

k + 1
=

1
16

J

Kr = Etot −Kt =
1
32

J

In order to find the period of motion, we would like to find a=d2x/dt2 and show that it is proportional to
position, a=−ω2x. We could write down a force and torque balance and arrive at the solution without an
inordinate amount of work. However, there is an easier way.

We can also find the period by noting that dE/dT = 0, since mechanical energy is conserved. Taking the
time derivative of the total energy will give us factors of acceleration and position; if we are lucky, that is
all.

dEtot
dt

=
d

dt

[(
k + 1

2

)
mv2 +

1
2
kx2

]
= 0

0 =
(
k + 1

2

)
m (2v)

(
dv

dt

)
+

1
2
k (2x)

(
dx

dt

)
0 = (k + 1)mva+ kxv

0 = (k + 1)ma+ kx (v 6= 0)

a = − k

m (k + 1)
x ≡ −ω2x

13



This is just the usual equation for simple harmonic motion, for which we know the solution

ω =

√
k

m (k + 1)

T =
2π
ω

Using k=1/2,

ω =

√
2k
3m

T = 2π

√
3m
2k

The division by v above means that this solution is not valid at the turning points, where v=0, which is not
really a restriction at all.

9. Halliday, Resnick & Walker Problem 15.26. Two blocks (m = 1.8 kg and M = 10 kg) and a spring
(k = 200 N/m) are arranged on a horizontal, frictionless surface. The coefficient of static friction between
the two blocks is 0.40. What amplitude of simple harmonic motion of the the spring-blocks system puts the
smaller block on the verge of slipping over the larger block?

If the upper block m is on the verge of slipping, it means that the force exerted on it by the larger block
equals the maximum force of static friction fs,max =µsmg. The force exerted on the smaller block is due to
the acceleration of the larger block, which we know to be a=ω2xm during simple harmonic motion. If the
acceleration a exceeds fs,max/m, the smaller block will fall off. The angular frequency of simple harmonic
motion ω is readily found by noting that the spring k is connected to a total mass M +m

ω=

√
k

M +m

The amplitude of simple harmonic motion gives us a maximal acceleration, which we can compare with
fs,max/m - the latter must be larger to avoid the smaller block falling off.

fs,max

m
> ω2xm

µsg >
kxm
M +m

xm <
µsg (M +m)

k
≈ 0.23 m

10. Halliday, Resnick & Walker Problem 15.56. A 2.50 kg disk of diameter D= 42.0 cm is supported by a
rod of length L=76.0 cm and negligible mass that is pivoted at its end. (a)With the massless torsion spring
unconnected, what is the period of oscillation? (b) With the torsion spring connected, the rod is vertical
at equilibrium. What is the torsion constant of the spring if the period of oscillation has been decreased by
0.500 s?

14



(a) Without the torsion spring, this is just a physical pendulum. In order to find its period, we need only
the moment of inertia of the pendulum bob about the pivot point of the pendulum. The bob is a simple disk,
with Icom = 1

2mr
2, and it rotates about the pendulum’s pivot point, a distance r + L away (here r=D/2

and m is the mass of the disk). The moment of inertia is then found from the parallel axis theorem:

I =
1
2
mr2 +m (r + L)2

We have already derived the formula for the period of a physical pendulum (To), given the moment of inertia
I and the distance from the bob’s center of mass to the pivot point h:

To = 2π

√
I

mgh
= 2π

√
1
2mr

2 +m (r + L)2

mg (r + L)
= 2π

√
1
2r

2 + (r + L)2

g (r + L)
≈ 2.00 s

(b) If the pendulum has a shorter period when the torsion spring is connected, this must mean that the
restoring torque due to the spring acts in the same direction as gravity. We can find the period of the new
pendulum by considering both torques together, and noting that the sum of all torques must give I times
the angular acceleration.

If our pendulum is inclined at an angle θ relative to its vertical equilibrium position, the magnitude of the
torque due to a torsion spring is κθ, while the torque on the pendulum due to the weight of the bob is
mgh sin θ. The torque balance then reads (noting that we have “restoring torques” present to get the signs
right)

∑
τ = −mgh sin θ − κθ = I

d2θ

dt2

If we assume small deviations from equilibrium (small θ), then sin θ≈θ, we recover our equation for simple
harmonic motion:

−mgh sin θ − κθ ≈ − (mgh+ κ) θ = I
d2θ

dt2

d2θ

dt2
= −

(
mgh+ κ

I

)
θ

=⇒ ω =

√
mgh+ κ

I

T = 2π

√
I

mgh+ κ

We know the new period T with the torsion spring is 0.500 sec shorter than To, T−To=-0.500 s, so we know
enough to find κ

15



T = 2π

√
I

mgh+ κ(
2π
T

)2

=
mgh+ κ

I

κ = I

(
2π
T

)2

−mgh = I

(
2π

To − 0.500

)2

−mgh ≈ 18.4 N m/rad

Waves

11. Halliday, Resnick & Walker Problem 16.25. A uniform rope of mass m and length L hangs from a
ceiling.

(a) The speed of transverse wave as a function of the position y from the bottom of the rope depends only
on the tension at that point. You can’t push on a rope, so the tension at that point depends only on how
much rope is hanging below that point, a length y. If we define a linear density µ=m/L - which we can do
since the rope is uniform - the weight of the rope below point y is yµ. The tension in the rope at that point
is then just yµg, and the wave speed is

v(y) =

√
T

µ
=
√
yµg

µ
µ =
√
yg

(b) The time a wave takes to travel the distance of the rope is found by noting that v(y) = dy/dt and
integrating along the length of the rope:

v(y) =
dy

dt

dt =
dy

v(y)

∆t =

L∫
0

dy

v(y)
=

L∫
0

√
1
yg

dy = 2
√
y

g

∣∣∣∣L
0

= 2

√
L

g

12. Halliday, Resnick & Walker Problem 16.34. A sinusoidal wave of angular frequency ω=1200 rad/s and
amplitude 3.00 mm is sent along a cord with linear density 2.00 g/m and tension 1200 N.

(a) The average rate of energy transfer can be found from the angular frequency ω, amplitude ym, linear
density µ, and tension T if we note that the wave speed is v=

√
T/µ:

Pavg =
1
2
µvω2y2

m =
1
2
µ

(√
T

µ

)
ω2y2

m =
1
2
ω2y2

m

√
Tµ ≈ 10 W

(b) Two strings, twice as much power . . . the waves cannot interfere if they travel on separate strings 20 W.

(c) Now the waves are along the same string, and we must consider interference. If the two waves have
a phase difference ϕ, they sum to form a new wave whose amplitude is given by 2ym cos ϕ2 . The power
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transmitted by this resultant wave is found by replacing the amplitude of a single wave ym in our power
equation above with 2ym cos ϕ2 :

P ′
avg =

1
2
ω2y2

m

√
Tµ
[
4 cos2

ϕ

2

]
=
[
4 cos2

ϕ

2

]
Pavg

In the first case, we have ϕ=0, and since 4 cos2 ϕ
2 =4 we have four times our previous power, P ′

avg≈40 W.

(d) With ϕ=0.4π, 4 cos2 ϕ
2 ≈2.62, and thus P ′

avg≈26.2 W.

(e) With ϕ=π, we have perfect destructive interference: cos2 ϕ
2 =0 and thus P ′

avg =0.

13. Halliday, Resnick & Walker Problem 16.60. A string tied to a sinusoidal oscillator . . .

The modes of a standing wave on a string of length L are determined only by the mode number n, the length
of the string L, and the wave speed v. The wave speed can be determined from the tension in the string T
and its linear density µ:

f =
nv

2L
=

n

2L

√
T

µ

What we have are two different modes n and m which correspond to different tensions T1 and T2. In each
case, the tension is provided by the hanging mass, so T1 = m1g and T2 = m2g. We do not have enough
information to so proceed based solely on the equation above and either single mass.

We are told that masses m1 and m2 result in standing wave patterns, but no masses in between m1 and m2.
This can only be the case if the two masses result in standing wave patterns one mode apart, which would
mean that there are no stable wave patterns for masses in between m1 and m2. The mode indices must then
be adjacent integers. Let the lower mode be n, and the higher n + 1. From the equation above, the higher
mode n+ 1 must correspond to the smaller mass m1 if f is to be constant.

The frequency of oscillation f is fixed by the oscillator when either mass is present, and thus

f =
n

2L

√
m2g

µ
=
n+ 1

2L

√
m1g

µ

n
√
m2 = (n+ 1)

√
m1

n (
√
m2 −

√
m1) =

√
m1

n =
√
m1√

m2 −
√
m1

= 4

The standing wave modes of the string must be the fourth and fifth modes. Now we may rearrange our first
equation to solve for µ. Plugging in n=4 and m2 =0.447 kg,

µ =
n2m2g

4f2L2
≈ 8.46× 10−4 kg/m
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Fluids / Kinetic Theory

14. Two objects, A and B, are submersed in a liquid of density ρs at depths of hA and hB , respectively. The
pressure above the liquid’s surface is P0. What is the difference in pressure experienced by the two objects?

2 ρsg(hA − hB) + 1
2P0

2 ρsg(hA − hB) + 2P0

2 ρsg(hA − hB) ←
2 P0 + ρsg(hA − hB)

15. Viscosity of most liquids can be represented by an extra “drag” force on a body moving in a liquid, which
is reasonably well approximated by Fdrag ∝ ηv, where v is the velocity of the body and η is a parameter of
the fluid (in full form, Fdrag = 6πηRv). The presence of viscosity leads to a “terminal velocity” of a body
falling in a liquid (e.g., a person falling in air).

Consider a sphere of radius R and density ρs falling through a liquid of density ρ and viscosity parameter η.
Including this new drag force, the buoyant force, and the weight of the object, which of the following could
be an expression for the terminal velocity of the sphere?

2 v = 4R2(ρs−ρ)
9η

2 v = 2R2 (ρs − ρ)

2 v = 2R2ρsg
9η

2 v = 2R2(ρs−ρ)g
9η ←

16. Two cylinders A and B have the same volume and contain the same number of moles of a monatomic
ideal gas. It is found that the pressure in vessel A is twice the pressure in vessel B. What is the relation
between the temperatures of the vessels?

2 TA = 2TB ←
2 TA = TB

2 TA = 0.5TB
2 TA = 4TB

17. Estimate the pressure exerted on your eardrum due to the water above when you are swimming at the
bottom of a pool that is 5.0 m deep. (Note ρwater = 1000 kg/m3).

– 4.9×104 Pa

2 1.88×105 Pa

2 2.73×106 Pa

2 3.76×105 Pa
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The air inside the middle ear is going to stay at about atmospheric pressure. The net force is therefore only
the increase of pressure with depth, we do not need to add in the atmospheric pressure above the water.

∆P = ρgh = [1000 kg/m]
[
9.81 m/s2

]
[5 m] = 4.9× 104Pa

18. An automobile tire is inflated with air originally at 10.0◦C and normal atmospheric pressure. During
the process, the air is compressed to 26.0% of its original volume and the temperature is increased to 32.0◦C.
What is the tire pressure?

2 7.15×104 Pa

2 8.35×105 Pa

– 4.20×105 Pa

2 1.23×106 Pa

Use the ideal gas law, PV = nRT to start with. The constant here is the number of moles, n = PV/RT , so we
relate PV/RT before and after the inflation, remembering to keep temperature in Kelvins (TK = 273.15+TC)

P1V1

RT1
=
P2V2

RT2

PatmV1

283
=
P2 · 0.26V1

305

P2 =
[

305
283

] [
1

0.26

]
Patm

P2 = 4.20× 105 Pa

Thermal Physics

19. 1 kg of liquid nitrogen at its boiling point of −195.81◦C is in an isolated container of negligible mass. A
mass of liquid water mw at 25◦C is dropped into the container. What should mw be in order to boil away
(vaporize) all of the liquid nitrogen, leaving behind ice at 0◦C? You may need the following data:

liquid nitrogen Lv = 2.01× 105 J/kg

water c = 4190 J/kg·K Lf = 3.34× 105 J/kg T = 0◦C freezing point

20. A pot with a steel bottom 8.50 mm thick rests on a hot stove. The area of the bottom of the pot is
0.150 m2. The water inside the pot is at 100.0◦C, and 0.390 kg of water are evaporated every 3.00 min. Find
the temperature of the lower surface of the pot, which is in contact with the stove. The thermal conductivity
of steel is k=50.2 W/m K, and the latent heat of vaporization of water is Lv=2.256× 106 J/kg.

21. How much heat must be absorbed by ice of mass m=0.72 kg at Ti=−20◦C to bring it to a liquid state
at Tf =15◦C?

� 317 kJ

2 187 kJ

2 207 kJ
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2 97 kJ

22. In the previous question, which step in the melting and heating process requires the greatest heat input?

2 warming the ice

� melting the ice

2 warming the liquid

23. In the previous question, which step in the melting and heating process requires the smallest heat input?

� warming the ice

2 melting the ice

2 warming the liquid

24. A 0.050 kg ingot of metal is heated to 200◦C and dropped into a beaker containing 0.400 kg of water
initially at 20.0◦C. If the final equilibrium temperature is 22.4◦C, what is the specific heat c of the metal?
Ignore heat transferred to the beaker and boil-off of the water. Assume the system is isolated. (Note:
cwater = 4186 J/kg· K.)

2 279 J/kg·◦C
2 148 J/kg·◦C
2 721 J/kg·◦C
� 453 J/kg·◦C

25. The temperature of a silver bar rises by 10◦C when it absorbs 1.23 kJ of energy by heat. The mass of
the bar is 525 g. Determine the specific heat c of silver.

� 234 J/kg· K

2 1240 J/kg· K

2 1.95 J/kg· K

2 8820 J/kg· K
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