PH105 Final Exam

Instructions

1. Solve 6 of 8 problems.
2. All problems have equal weight. Show your work for full credit.
3. You are allowed 2 sheets of an 8.5×11 in piece of paper with notes and a calculator.
4. A ramp of height h and angle θ sits at the edge of a table of height H. A solid sphere rolls down a ramp. At the bottom of the ramp, the ball is launched and lands a distance d from the base of the table. Find d. For concreteness, let $h=0.5 \mathrm{~m}, H=1 \mathrm{~m}$, and $\theta=45^{\circ}$.

5. A mass $m_{1}=1.0 \mathrm{~kg}$ travels over a frictionless surface at $5.0 \mathrm{~m} / \mathrm{s}$ and strikes a mass $m_{2}=2.0 \mathrm{~kg}$. After the collision, mass m_{2} slides over a region with kinetic friction $\mu_{k}=0.5$. How far does m_{2} slide before stopping?
6. When a car is braking, the friction between the brake drums and brake shoes converts kinetic energy into heat. If a 2000 kg car brakes from $25 \mathrm{~m} / \mathrm{s}$ to $0 \mathrm{~m} / \mathrm{s}$, (a) how much heat is generated in the brakes? (b) If each of the four brake drums has a mass of 9.0 kg and a specific heat of $450 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{K}$, how much does the temperature of each one of the brake drums rise? (Assume all heat accumulates in the brake drums.)
7. A string of mass per unit length μ_{1} is tied to a second string of mass per unit length μ_{2}. A harmonic wave of speed v_{1} traveling along the first string reaches the junction and enters the second string. What will be the speed v_{2} of this wave in the second string? Hint: your answer should be in terms of v_{1}, μ_{1}, and μ_{2}. Figure out what is the same for both strings.
8. A supertanker has a submerged depth of 30 m when in seawater (density $\rho=1025 \mathrm{~kg} / \mathrm{m}^{3}$). What will be the submerged depth of the tanker be when it enters a river estuary with freshwater (density $\left.\rho=1000 \mathrm{~kg} / \mathrm{m}^{3}\right)$? Assume the sides of the ship are vertical.
9. A hoop of mass M and radius R rolls down a sloping ramp that makes an angle of 30.0° with the ground. The surface of the ramp has a coefficient of static friction $\mu_{s}=0.589$. What is the acceleration of the hoop if it rolls without slipping? Hint: it is not $g \sin 30.0^{\circ}$.
10. Two identical small steel balls are suspended from strings of length l so they touch when hanging straight down, in their equilibrium position. If we pull one of the balls back until its string makes an angle θ with the vertical and let go, it will collide elastically with the other ball. How high will the other ball rise?

11. High-altitude mountain climbers do not eat snow, but always melt it first with a stove. To see why, calculate the energy absorbed from a climber's body under the following conditions. The specific heat of ice is $2100 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{K}$, the latent heat of fusion is $333 \mathrm{~kJ} / \mathrm{kg}$, the specific heat of water is $4186 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{K}$. (a) Calculate the energy absorbed from a climber's body if she eats 0.95 kg of $-15^{\circ} \mathrm{C}$ snow which her body warms to a temperature of $37^{\circ} \mathrm{C}$. (b) Calculate the energy absorbed from a climber's body if she melts 0.95 kg of $-15^{\circ} \mathrm{C}$ snow using a stove and drinks the resulting 0.95 kg of water at $2^{\circ} \mathrm{C}$, which her body has to warm to $37^{\circ} \mathrm{C}$.

Formula sheet

$$
\begin{aligned}
& g=9.81 \mathrm{~m} / \mathrm{s}^{2} \quad G=6.67 \times 10^{-11} \mathrm{~N} \mathrm{~m}^{2} / \mathrm{kg}^{2} \\
& N_{A}= 6.022 \times 10^{23} \text { things } / \mathrm{mol} \quad 1 \mathrm{~L}=10^{-3} \mathrm{~m}^{3} \\
& k_{B}= 1.38065 \times 10^{-23} \mathrm{~J} \cdot \mathrm{~K}^{-1} \\
& R=8.31446 \mathrm{~J} \cdot \mathrm{~mol}^{? 1} \cdot \mathrm{~K}^{? 1} \\
& \text { sphere } \quad V=\frac{4}{3} \pi r^{3} \quad A=4 \pi r^{2} \\
& a x^{2}+b x^{2}+c= 0 \Longrightarrow x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& \overrightarrow{\mathbf{v}}= \lim _{\Delta t \rightarrow 0} \frac{\Delta \overrightarrow{\mathbf{r}}}{\Delta t} \equiv \frac{d \overrightarrow{\mathbf{r}}}{d t} \\
& a_{x}= \lim _{\Delta t \rightarrow 0} \frac{\Delta v_{x}}{\Delta t} \equiv \frac{d v_{x}}{d t}=\frac{d}{d t}\left(\frac{d x}{d t}\right)=\frac{d^{2} x}{d t^{2}} \\
& t_{f} \\
& \Delta v_{x}= \int_{t_{i}}^{a_{x}(t) d t} \quad \Delta x=\int_{t_{i}} v_{x}(t) d t \\
& x(t)= x_{i}+v_{x, i} t+\frac{1}{2} a_{x} t^{2} \\
& v_{x}(t)= v_{x, i}+a_{x} t \\
& v_{x, f}^{2}= v_{x, i}^{2}+2 a_{x} \Delta x \\
& a_{x, \mathrm{ramp}}= g \sin \theta
\end{aligned}
$$

$$
\begin{aligned}
\Delta U^{G} & =m g \Delta x \quad \frac{a_{1 x}}{a_{2 x}}=-\frac{m_{2}}{m_{1}} \\
E_{\text {mech }} & =K+U \quad K=\frac{1}{2} m v^{2} \\
\Delta E & =\Delta K+\Delta U=0 \quad \text { non-dissipative, closed }
\end{aligned}
$$

$$
\Delta E=W \quad P=\frac{d E}{d t}
$$

$$
\Delta U_{\text {spring }}=\frac{1}{2} k\left(x-x_{o}\right)^{2}
$$

$$
P=F_{\text {ext }, \mathrm{x}} v_{x} \quad \text { one dimension }
$$

$$
W=\left(\sum \overrightarrow{\mathbf{F}}\right) \Delta x_{F} \quad \text { constant force 1D }
$$

$$
W=\int_{x_{i}}^{x_{f}} F_{x}(x) d x \quad \text { nondiss. force, 1D }
$$

Derived unit	Symbol	equivalent to
newton	N	$\mathrm{kg} \cdot \mathrm{m} / \mathrm{s}^{2}$
joule	J	$\mathrm{kg} \cdot \mathrm{m}^{2} / \mathrm{s}^{2}=\mathrm{N} \cdot \mathrm{m}$
watt	W	$\mathrm{J} / \mathrm{s}=\mathrm{m}^{2} \cdot \mathrm{~kg} / \mathrm{s}^{3}$

$$
\begin{aligned}
& \Delta \overrightarrow{\mathbf{p}}=\overrightarrow{\mathbf{0}} \quad \text { isolated system } \\
& \overrightarrow{\mathbf{p}}_{f}=\overrightarrow{\mathbf{p}}_{i} \quad \text { isolated system } \\
& \overrightarrow{\mathbf{p}} \equiv m \overrightarrow{\mathbf{v}} \\
& m_{u}=-\frac{\Delta v_{s, x}}{\Delta v_{u, x}} m_{s} \\
& \overrightarrow{\mathbf{J}}=\Delta \overrightarrow{\mathbf{p}} \\
& v_{1 f}=\left(\frac{m_{1}-m_{2}}{m_{1}+m_{2}}\right) v_{i 1}+\left(\frac{2 m_{2}}{m_{1}+m_{2}}\right) v_{2 i} \quad 1 \mathrm{D} \text { elastic } \\
& v_{2 f}=\left(\frac{2 m_{1}}{m_{1}+m_{2}}\right) v_{1 i}+\left(\frac{m_{2}-m_{1}}{m_{1}+m_{2}}\right) v_{2 i} \quad 1 \mathrm{D} \text { elastic } \\
& \overrightarrow{\mathbf{a}}=\frac{\sum_{\mathbf{F}}}{m} \quad \mathbf{\mathbf { a } _ { \mathbf { c m } }}=\frac{\sum \overrightarrow{\mathbf{F}}_{\text {ext }}}{m} \quad \sum \overrightarrow{\mathbf{F}} \equiv \frac{d \overrightarrow{\mathbf{p}}}{d t} \\
& \overrightarrow{\mathbf{J}}=\left(\sum^{\overrightarrow{\mathbf{F}}}\right) \Delta t \quad \text { constant force } \\
& \overrightarrow{\mathbf{J}}=\int_{t_{i}}^{t_{f}} \overrightarrow{\mathbf{F}_{12}} \\
& \overrightarrow{\mathbf{F}_{12}}(t) d t \quad \text { time-varying force } \\
&=-\mathbf{F}_{21} \quad F_{\mathrm{grav}}=-m g \quad F_{\text {spring }}=-k \Delta x
\end{aligned}
$$

Rotation: we use radians

$$
\begin{aligned}
s & =\theta r \quad \leftarrow \text { arclength } \\
\omega & =\frac{d \theta}{d t}=\frac{v_{t}}{r} \quad \alpha=\frac{d \omega}{d t} \\
a_{t} & =\alpha r \quad \text { tangential } \quad a_{r}=-\frac{v^{2}}{r}=-\omega^{2} r \quad \text { radial } \\
v_{t} & =r \omega \quad v_{r}=0 \quad \omega_{f}^{2}=\omega_{i}^{2}+2 \alpha \Delta \theta
\end{aligned}
$$

$$
\begin{aligned}
\left(F_{12}^{s}\right)_{\max } & =\mu_{s} F_{12}^{n} \\
F_{12}^{k} & =\mu_{k} F_{12}^{n} \\
W & =\overrightarrow{\mathbf{F}} \cdot \Delta \overrightarrow{\mathbf{r}}_{F} \quad \text { const non-diss force } \\
W & =\int_{\overrightarrow{\mathbf{r}}_{i}}^{\overrightarrow{\mathbf{r}}_{f}} \overrightarrow{\mathbf{F}}(\overrightarrow{\mathbf{r}}) \cdot d \overrightarrow{\mathbf{r}} \quad \text { variable nondiss force }
\end{aligned}
$$

\downarrow launched from origin, level ground

$$
y(x)=\left(\tan \theta_{o}\right) x-\frac{g x^{2}}{2 v_{o}^{2} \cos ^{2} \theta_{o}}
$$

$$
\max \text { height }=H=\frac{v_{i}^{2} \sin ^{2} \theta_{i}}{2 g}
$$

$$
\begin{aligned}
\text { Range } & =R=\frac{v_{i}^{2} \sin 2 \theta_{i}}{g} \\
\left(F_{12}^{2}\right)_{\max } & =\mu_{s} F_{12}^{n} \quad F_{12}^{k}=\mu_{k} F_{12}^{n}
\end{aligned}
$$

fluids:

$$
\begin{aligned}
P & =F / A \quad P(d)=P_{\text {surface }}+\rho g d \\
\frac{F_{1}}{A_{1}} & =\frac{F_{2}}{A_{2}} \quad F_{1} x_{1}=F_{2} x_{2} \quad \text { hydraulics } \\
B & =\text { buoyant force }=\text { weight of water displaced }=\rho_{f} V_{\text {displ }} g \\
P & =P_{\text {gauge }}+P_{\text {atm }} \quad \rho=M / V
\end{aligned}
$$

$$
\begin{aligned}
I & =\sum_{i} m_{i} r_{i}^{2} \Rightarrow \int r^{2} d m=k m r^{2} \\
I_{z} & =I_{c o m}+m d^{2} \quad \text { axis } z \text { parallel, dist } d \\
\overrightarrow{\mathbf{L}} & =\overrightarrow{\mathbf{r}} \times \overrightarrow{\mathbf{p}}=I \overrightarrow{\boldsymbol{\omega}} \\
K & =\frac{1}{2} I \omega^{2}=L^{2} / 2 I \\
\Delta K & =\frac{1}{2} I \omega_{f}^{2}-\frac{1}{2} I \omega_{i}^{2}=W=\int \tau d \theta \\
P & =\frac{d W}{d t}=\tau \omega \\
\tau & =r F \sin \theta_{r F}=r_{\perp} F=r F_{\perp} \\
\tau_{\text {net }} & =\sum \overrightarrow{\boldsymbol{\tau}}=I \overrightarrow{\boldsymbol{\alpha}}=\frac{d \overrightarrow{\mathbf{L}}}{d t} \\
K_{\text {tot }} & =K_{c m}+K_{r o t}=\frac{1}{2} m v_{c m}^{2}+\frac{1}{2} I \omega^{2}
\end{aligned}
$$

Moments of inertia of things of mass M

Moments of inertia of things of mass M			
Object	axis	dimension	\mathbf{I}
solid sphere	central	radius R	$\frac{2}{5} M R^{2}$
hollow sphere	central	radius R	$\frac{2}{3} M R^{2}$
solid disc	central	radius R	$\frac{1}{2} M R^{2}$
hoop	central	radius R	$M R^{2}$
point particle	pivot	distance R to pivot	$M R^{2}$
rod	center	length L	$\frac{1}{12} M L^{2}$
rod	end	length L	$\frac{1}{3} M L^{2}$

Oscillations:

$$
\left.\left.\begin{array}{rl}
T \text { ations: } & =\frac{1}{f}=\frac{2 \pi}{\omega} \quad \omega=\frac{2 \pi}{T}=2 \pi f \quad k=\frac{2 \pi}{\lambda} \\
x(t) & =A \sin \left(\omega t+\varphi_{i}\right) \\
v(t) & =\frac{d x}{d t}=\omega A \cos \left(\omega t+\varphi_{i}\right) \\
a(t) & =\frac{d^{2} x}{d t^{2}}=-\omega^{2} A \sin \left(\omega t+\varphi_{i}\right) \\
\varphi(t) & =\omega t+\varphi_{i} \\
a & =-\omega^{2} x=\frac{d^{2} x}{d t^{2}} \quad \frac{d^{2} \theta}{d t^{2}}=-\omega^{2} \theta \\
E & =\frac{1}{2} m \omega^{2} A^{2} \\
F_{\text {spring }}=-k x
\end{array}\right] \begin{array}{lll}
\omega & =\sqrt{k / m} & \text { spring. }
\end{array}\right\} \begin{array}{ll}
2 \pi \sqrt{L / g} & \text { simple pendulum } \\
2 \pi \sqrt{I / m g l_{c m}} & \text { physical pendulum }
\end{array}
$$

Waves:

$$
\begin{aligned}
y & =f(x-c t) \quad \text { along }+\mathrm{x} \quad y=f(x+c t) \quad \text { along }-\mathrm{x} \\
k & =\frac{2 \pi}{\lambda} \quad \lambda=c T \quad \omega=\frac{2 \pi}{T} \quad c=\lambda f \\
y(x, t) & =f(x, t)=A \sin \left(k x-\omega t+\varphi_{i}\right) \\
y(x, t) & =2 A \sin k x \cos \omega t \quad \text { standing wave }
\end{aligned}
$$

$$
\begin{aligned}
& \text { nodes at } x=0, \pm \frac{\lambda}{2}, \pm \lambda, \pm \frac{3 \lambda}{2} \\
v & =\sqrt{T / \mu} \quad \mu=M_{\text {string }} / L_{\text {string }} \quad T=\text { tension } \\
P_{\mathrm{av}} & =\frac{1}{2} \mu \lambda A^{2} \omega^{2} / T=\frac{1}{2} \mu A^{2} \omega^{2} c \\
\frac{\partial^{2} f}{\partial x^{2}} & =\frac{1}{c^{2}} \frac{\partial^{2} f}{\partial t^{2}} \\
f_{n} & =\frac{n v}{\lambda}=\frac{n v}{2 L} \quad \lambda_{n}=\frac{2 L}{n} \quad n=1,2,3 \ldots \quad \text { strings \& open-open pipe } \\
f_{n} & =\frac{n v}{\lambda}=\frac{n v}{4 L} \quad \lambda_{n}=\frac{4 L}{n} \quad n=1,3,5 \ldots \quad \text { closed-open pipe }
\end{aligned}
$$

thermal stuff:

$$
\begin{aligned}
P V & =N k_{B} T=n R T \\
W & =P \Delta V \\
T(K) & =T\left({ }^{\circ} C\right)+273.15^{\circ} \\
Q & =m c \Delta t \quad c=\text { specific heat } \quad \text { no phase chg } \\
Q & = \pm m L \quad \text { phase chg }
\end{aligned}
$$

Isolated systems: $\overrightarrow{\mathbf{p}}, E=K+P E, L$ are all conserved.
Static equilibrium: $\sum F=0$ and $\sum \tau=0$ about any axis.
Elastic collision: KE and p are both conserved.
Inelastic collision: only p is conserved, not KE.

Power	Prefix	Abbreviation
10^{-6}	micro	μ
10^{-3}	milli	m
10^{-2}	centi	c
10^{3}	kilo	k
10^{6}	mega	M

