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Week 3 Homework - Solutions

Problems for 9 June (due 10 June)

1. On a frictionless table, a mass m moving at speed v collides with another mass m initially at

rest. The masses stick together. How much energy is converted to heat?

Solution: You can get the final velocity with the 1D inelastic collision equation (or just conserve

momentum). The initial kinetic energy is 1
2mv

2, the final kinetic energy is 1
4mv

2, so 1
4mv

2 is lost

to heat.

2. A very light ping pong ball bounces elastically head-on off a very heavy bowling ball that is

initially at rest. What is the fraction of the ping pong ball’s initial kinetic energy that is transferred

to the bowling ball?

Solution: Use the 1D elastic collision equation with v2i=0 and letm2→∞ to represent the bowling

ball. This gives v1f≈v1i, the ping pong ball has essentially the same speed after the collision. That

means its kinetic energy is approximately the same, and almost no energy is transferred to the

bowling ball.

3. A large howitzer is rigidly attached to a carriage, which can move along horizontal rails but

is connected to a sturdy wall by a large spring, initially unstretched and with force constant

k = 1.90× 104 N/m, as shown below. The cannon fires a 200 kg projectile at a velocity of 125 m/s

directed 45.0◦ above the horizontal.

If the mass of the cannon and its carriage is 4780 kg, find the maximum extension of the spring.

Solution: First, we want to find the recoil velocity of the cannon, from which we can use conser-

vation of energy to get the maximal extension of the spring.



We can get the recoil velocity from conservation of momentum, but we have to be careful. The

projectile’s momentum has both x and y components, but the howitzer will only move in the −x

direction. We have to write down conservation of momentum my components. In this case we only

need the x components.

~pi = ~pf

pxi = pxf

0 = vprojmproj cos 45◦ +mhowitzervhowitzer

vhowitzer = −

(
mproj

mhowitzer

)
vproj cos 45◦

Now that we have the recoil velocity of the cannon, we can use conservation of energy to relate the

cannon’s kinetic energy to the energy stored in the spring.

1

2
mhowitzerv

2
cannon =

1

2
k (∆x)2

∆x =

√
mhowitzer

k
vhowitzer

∆x =

√
mhowitzer

k

(
mproj

mhowitzer

)
vproj cos 45◦

∆x =

[
mproj√
kmhowitzer

]
vproj cos 45◦

∆x =

[
200 kg√

(1.90× 104 N/m) (4780 kg)

]
(125 m/s)

(√
2

2

)
≈ 1.85 m

Problems for 10 June (due 11 June)

4. A uniformly dense rope of length b and mass per unit length λ is coiled on a smooth table. One

end is lifted by hand with constant velocity vo. Find the force of the rope on the hand when the

rope is a distance a above the table (b>a).

Solution: Find: The force a rope exerts on a hand pulling it upward off of a table, as a function

of position. The hand will have to pull against the rope’s weight, but also against the changing

momentum of the rope as more of it leaves the table.

Given: The length b and linear mass density λ, the constant velocity at which the rope is pulled.



Sketch: We want to know the total force between the hand and rope when a length a of the rope

has been pulled off of the table at constant speed vo.

a

dx

v0

x

Take a small segment of rope dx a height x off of the table, as shown in the sketch above, with

the +x direction being upward. This small segment has mass dm=λdx, and was pulled off of the

table at constant velocity vo. Just before the segment was pulled off of the table, it was simply

lying there with zero velocity and hence zero momentum. An instant later, it is moving away from

the table at velocity vo, which clearly implies a non-zero momentum. This means that during the

time dt it took to pull the segment dx off of the table completely, its momentum changed from 0

to pf. This time rate of change of momentum is a force.

Relevant equations: The main equation we will need is that force is the time rate of change of

momentum:

~F =
d~p

dt

Additionally, we need to know the weight of an arbitrary length of rope. Take a small section of

rope of length a. Since the mass per unit length of the rope is λ, the mass of that segment must

be λa, and its weight λgdx.

Symbolic solution: Consider again our segment of rope dx. It has mass dm and velocity vo just

after it leaves the table, and zero velocity just before. The momentum change dp in pulling that

segment of rope off of the table is

dp = vodm = voλdx

If this segment took dp to pull off of the table, we can easily find the time rate of change of

momentum by dividing by dt:

dp

dt
= voλ

dx

dt
= v2oλ



Here we used the fact that dx/dt is simply the velocity of the rope, which were are given as vo.

This is the impulse force that brings the string off the table, and which also acts on the hand

pulling it off of the table. This impulse force is independent of how much rope is already off of

the table, which makes sense: it only involves changing the momentum of an infinitesimal bit of

rope at one instant, and does not depend on what the rest of the rope is doing. Since the bit of

rope changes its velocity from zero to straight upward, the impulse that the hand feels must act in

the downward direction by Newton’s third law. That is, the force acting on the hand Fi must be

equal and opposite of the impulse force acting on the rope, which is equal to the rope’s time rate

of change in momentum:

Fi = −
dp

dt
= −v2oλ

In addition to the impulse, the hand must also support the weight of the string already off of the

table. A length a of the rope must have mass λa, and therefore the hand must support a weight

of W= −λga, also acting downward. The total force on the hand is this weight plus the impulse

force:

Ftot =W + Fi = −λga− λv2o = −λga

(
1 +

v2o
ag

)

Numeric solution: Once again, there are no numbers given.

Double check: Dimensionally, our answer is correct. Checking each term in our force balance,

noting that λ must have units of kilograms per meter

λga =
[
kg m−1

] [
m s2

]
[m] =

[
kg m/s2

]
= [N]

λv2o =
[
kg m−1

] [
m2 s2

]
= [N]

Our answer also makes sense qualitatively: both the impulse and weight force should get larger as λ

increases (i.e., as the rope gets heavier). As the total length of rope above the table a increases, the

weight should increase while the impulse force remains constant, which also makes sense. Finally,

the impulse force should increase as the pulling speed vo increases, while the weight should be

unaffected.

5. A uniform disk with mass M= 2.5 kg and radius R= 20 cm is mounted on a fixed horizontal

axle, as shown below. A block of mass m = 1.2 kg hangs from a massless cord that is wrapped

around the rim of the disk. Find the acceleration of the falling block, the angular acceleration of

the disk, and the tension in the cord. Note: the moment of inertia of a disk about its center of

mass is I= 1
2MR

2.



m

M

Solution: In order to get acceleration and angular acceleration, we’ll need to use force and torque,

respectively. Start with the pulley. The tension T in the rope pulls on the edge of the disk a

distance R from the center of rotation at an angle of θRT = 90◦, which causes a torque τ. This

torque must equal the disk’s moment of inertia times the angular acceleration.

τ = RT sin θRT = RT = Iα =
1

2
MR2α (1)

α =
2T

MR
(2)

We can get the tension by considering the force balance for the hanging mass. We have the tension

in the tope pulling up, the weight of the mass pulling down, and an overall acceleration downward.

Thus

∑
F = T −mg = −ma (3)

Noting that a=Rα, this gives T =mg−MRα. Now we’ve got two equations for α, which we can

combine.

α =
2T

MR
=

2

MR
(mg−mRα) =

2mg

MR
−

2m

M
α (4)

2mg

MR
= α

(
1 +

2m

M

)
(5)

α =
2mg

R (M+ 2m)
≈ −24 rad/s2 (6)

Given α, we can find a and T .

a = Rα =
2mg

M+ 2m
≈ −4.8 m/s2 (7)

T = mg−MRα = mg−
2m2g

M+ 2m
= mg

(
1 −

2m

M+ 2m

)
= g

(
mM

M+ 2m

)
≈ 6.0 N (8)



Problems for 11 June (due 12 June)

6. In the figure below, a small block of mass m slides down a frictionless surface through height h

and then sticks to a uniform rod of mass M and length L. The rod pivots about point O through

angle θ before momentarily stopping. Find θ.

A

BC

m

M

hθl cos θ l

Solution: Solution: Referring to the sketch above, let A be the starting point, B the moment of

collision between the ball and rod, and C the point when maximum height is reached by the rod +

ball system. We approximate the ball as a point mass, since we are told it is small (and we anyway

have no way of calculating its moment of inertia, since we do not have any geometrical details . . . ).

The velocity v of the ball at point B can be found using conservation of mechanical energy. Let the

floor be the height of zero gravitational potential energy.

KA +UA = KB +UB

mgh =
1

2
mv2

=⇒ v =
√

2gh

The collision is clearly inelastic, since the ball sticks to the rod. We could use conservation of linear

momentum, but this would require breaking up the rod into infinitesimal discrete bits of mass and

integrating over its length. Easier is to use conservation of angular momentum about the pivot

point of the rod. Just before the collision, we have the ball moving at speed v a distance l. Let ı̂

be to the right, and ̂ upward (making k̂ into the page). The initial angular momentum is then

~Li =~r×~p = l ̂× (−mv ı̂) = −mvl (̂× ı̂) = mvl k̂ = ml
√

2gh k̂

After the collision, we have the rod and mass stuck together, rotating at angular velocity ω.

Defining counterclockwise rotation to be positive as usual, the final angular momentum is thus

~Lf = Iω k̂

The total moment of inertia about the pivot point is that of the rod rotating plus that of the ball.



The rod rotates a distance l/2 from its center of mass, and again we approximate the ball as a

point mass rotating at a distance l (since we told it is small).

I = Irod + Iball = Irod, com +M

(
l

2

)2

+ml2 =
1

12
Ml2 +Ml2 +ml2 =

(
1

3
M+m

)
l2

Equating initial and final angular momentum, we can solve for the angular velocity after the

collision:

Lf = Iω = Li = mvl = ml
√

2gh(
1

3
M+m

)
l2ω = ml

√
2gh

ω =
m
√

2gh(
1

3
M+m

)
l

At this point, we may use conservation of energy once again. When the system reaches its maximum

angle θ at C, the center of mass of the rod + ball system will have moved up by an amount ∆ycm.

The change in gravitational potential energy related to this change in center of mass height must

be equal to the rotational kinetic energy just after the collision. Thus,

1

2
Iω2 =

~L ·~L
2I

=
L2

2I
= (m+M)g∆ycm

Here we have noted that the rotational kinetic energy can be related to the angular momentum to

save a bit of algebra. To proceed, we must find the difference in the center of mass height between

points C and B. Let y=0 be the height of the floor. At point B,

ycm,B =

M

(
L

2

)
+m (0)

m+M
=

(
l

2

)(
M

m+M

)

At point C, the ball is now at a height l− l cos θ, while the center of mass of the rod (its midpoint)

is now at l− l cos θ+ 1
2l cos θ. Thus,

ycm,C =

M

(
l− l cos θ+

1

2
l cos θ

)
+m (l− l cos θ)

m+M
=

Ml

(
1 −

1

2
cos θ

)
+ml (1 − cos θ)

m+M

The change in center of mass height can now be found:



∆ycm = ycm,C − ycm,B =

Ml

(
1 −

1

2
cos θ

)
+ml (1 − cos θ) −

1

2
Ml

m+M

=

1

2
Ml (1 − cos θ) +ml (1 − cos θ)

m+M

=
l

m+M
(1 − cos θ)

(
m+

1

2
M

)

Using our previous energy balance between B and C,

L2

2I
= (m+M)g∆ycm = lg (1 − cos θ)

(
m+

1

2
M

)

We could also have found the change in potential energy a bit more easily by just separately

considering the change energy due to the change in height of the center of mass of the rod and the

ball separately and adding the two together. The putty changes height by l−l cos θ, while the rod’s

center of mass changes height by half that much.

∆Uball = mghball = mgl (1 − cos θ) (9)

∆Urod =Mgrod, cm =Mg
l

2
(1 − cos θ) (10)

∆Utot = ∆Uball + ∆Urod = gl (1 − cos θ)

(
m+

1

2
M

)
(11)

Since the initial and final angular momenta are equal, we may substitute either Lf or Li, the latter

being the easiest option. This is not strictly necessary – we could use Lf or even just grind through
1
2Iω

2 and the result must be the same. However, using Li here saves quite a bit of algebra in the

end when we try to put θ in terms of only given quantities. Doing so, and solving for θ

L2f
2I

=
L2i
2I

=
2l2m2gh

2
(
1
3M+m

)
l2

= lg (1 − cos θ)

(
m+

1

2
M

)
1 − cos θ =

m2h

l
(
1
3M+m

) (
1
2M+m

)
θ = cos−1

[
1 −

m2h

l
(
1
3M+m

) (
1
2M+m

)]

Note that for m=0, θ=0, as we expect. On the other hand, for M=0 we have cos θ=1−h/l=1/2.

This means that the particle is at a height l− l cos θ= l/2=h at point C – exactly what we would

expect if mechanical energy were conserved!



7. In the figure below, block 1 has mass m1, block 2 has mass m2 (with m2>m1), and the pulley

(a solid disc), which is mounted on a horizontal axle with negligible friction, has radius R and mass

M. When released from rest, block 2 falls a distance d in t seconds without the cord slipping on

the pulley. (a) What are the magnitude of the accelerations of the blocks? (b) What is T1? (c)

What is T2? (d) What is the pulley’s angular acceleration? The moment of inertia of a solid disc

is I= 1
2MR

2.

Solution: Give m2>m1, we expect a clockwise rotation. Taking the positive y direction as up-

ward, that makes the acceleration of mass 2 negative and that of mass 1 positive. We need to do

two thing: first, balance the forces on the hanging masses, and two, analyze the torque on the disc.

With the sign conventions noted above, the forces are

T2 −m2g = −m2a (12)

T1 −m1g = m1a (13)

What we must be careful about now are the facts that the tension in each side of the rope is not just

the weight of the hanging mass (this can’t be true if the masses are accelerating, as the equations

above indicate), and we should not assume that T1=T2 when we have the pully’s moment of inertia

to consider. That means we have three unknowns (T1, T2, and a) but only two equations. Adding

the torque analysis gets us the last equation we need.

∑
τ = RT2 − RT1 = R(T2 − T1) = Iα (14)

Noting that α=a/R, one can solve the resulting equations for T1, T2, and a. The angular acceler-

ation is also readily found. I’ll assume you can work out the details:



a =

(
m2 −m1

m1 +m2 +
1
2M

)
g (15)

α =

(
m2 −m1

m1 +m2 +
1
2M

)
g

R
(16)

T1 =

(
2m1m2 +

1
2Mm1

m1 +m2 +
1
2M

)
g (17)

T2 =

(
2m1m2 +

1
2Mm2

m1 +m2 +
1
2M

)
g (18)

How do we know this is plausible? We can set I=0 to ignore the effect of the pulley, which reduces

the system to the simple case of two masses on an ideal massless pulley that we’ve already studied.

With I=0:

a =

(
m2 −m1

m1 +m2

)
g (19)

T1 =

(
2m1m2

m1 +m2

)
g (20)

T2 =

(
2m1m2

m1 +m2

)
g (21)

Now we see T1=T2, and the tensions and acceleration are just what we found before.

8. A flywheel rotating freely on a shaft is suddenly coupled by means of a drive belt to a second

flywheel sitting on a parallel shaft (see figure below). The initial angular velocity of the first

flywheel is ω, that of the second is zero. The flywheels are uniform discs of masses Ma and Mc

with radii Ra and Rc respectively. The moment of inertia of a solid disc is I= 1
2MR

2. The drive belt

is massless and the shafts are frictionless. (a) Calculate the final angular velocity of each flywheel.

(b) Calculate the kinetic energy lost during the coupling process. Hint: if the belt does not slip,

the linear speeds of the two rims must be equal.

Solution: If the belt doesn’t slip, the linear velocity of the wheels must be the same at their outer

rim when the final state is reached. That implies



va = vc (22)

Raωa = Rcωc (23)

ωc =
Ra

Rc
ωa (24)

The sudden coupling of the second flywheel is basically a collision, and as is usually the case with

collisions, conservation of energy is not a viable approach (how would you figure out how much

energy the collision cost?). Conservation of momentum, or angular momentum when we have a

rotation problem, is the way to go. Initially we have only the first flywheel rotating at ω, after

the fact both are rotating. Conservation of angular momentum, combined with the relationship

between ωa and ωc gives:

Li = Lf (25)

Iaω = ωaIa +ωcIc = ωaIa +
Ra

Rc
ωaIc (26)

=⇒ ωa =
ω

1 + RaIc/RcIa
(27)

Using the fact that the moments of inertia are I= 1
2MR

2,

ωa =
ω

1 +McRc/MaRa
(28)

The kinetic energy loss is straightforward to calculate, if messy.

Kf =
1

2
Iaω

2
a +

1

2
Icω

2
c =

1

2
Iaω

2
a

(
1 +

IcR
2
a

IaR2c

)
(29)

Ki =
1

2
Iaω

2 (30)

With a bit of algebra, you can work out the ratio

Kf

Ki
=
MaR

2
a (Ma +Mc)

(MaRa +McRc)
2 (31)

9. A solid sphere, a solid cylinder, and a thin-walled pipe, all of mass m, roll smoothly along

identical loop-the-loop tracks when released from rest along the straight section (see figure below).

The circular loop has radius R, and the sphere, cylinder, and pipe have radius r�R (i.e., the size

of the objects may be neglected when compared to the other distances involved). If h=2.8R, which



of the objects will make it to the top of the loop? Justify your answer with an explicit calculation.

The moments of inertia for the objects are listed below.

I =


2
5mr

2 sphere

1
2mr

2 cylinder

mr2 pipe

(32)

Hint: consider a single object with I=kmr2 to solve the general problem, and evaluate these three

special cases only at the end.

h R

m

Solution: To start with, we just need to do conservation of energy. The object goes through a

height h − 2R to get to the top of the loop. Including both rotational and translational kinetic

energy,

mg(h− 2R) =
1

2
mv2 +

1

2
(kmr2)ω2 = (1 + k)

(
1

2
mv2

)
(33)

This doesn’t tell us if the object actually makes it to the top of the loop or not. For that, we need

to be sure that the velocity is high enough to be consistent with the required centripetal force. The

centripetal force must be provided by the object’s weight.

mv2

R
> mg (34)

v2 > Rg (35)

Using the energy equation, we have another equation for v2. Combining:

v2 =
2g (h− 2R)

1 + k
> Rg (36)

k 6
h− 2R

R
=
h

R
− 2 (37)

Given h=2.8R, our condition is that k60.8. This is true for the sphere (k=2/5) and the cylinder



(k= 1/2), but not for the pipe (k= 1). Thus, the sphere and cylinder make it, but the pipe does

not.

10. The rotational inertia (moment of inertia) of a collapsing spinning star drops to 1
3 its initial

value. What is the ratio of the new rotational kinetic energy to the initial rotational kinetic energy?

Solution: If we need the rotational kinetic energy ratio, we’ll have to get the relationship between

the angular velocities first. For that all we need is conservation of angular momentum, noting that

the final moment of inertia If is one third of the initial value Ii.

Li = Lf (38)

Iiωi = Ifωf =
1

3
Iiωf (39)

ωf = 3ωi (40)

Makes sense: if the moment of inertia goes down three times, the rate of rotation has to go up

three times to conserve angular momentum. That’s all we need to get the kinetic energy ratio.

Ki

Kf
=

1
2Iiω

2
i

1
2Ifω

2
f

=
1

3
(41)

Problems for 12 June (due 15 June)

11. The fastest possible rate of rotation of a planet is that for which the gravitational force on

material at the equator just barely provides the centripetal force needed for the rotation. Show

that the corresponding shortest period of rotation is

T =

√
3π

Gρ

where ρ is the uniform density (mass per unit volume) of the spherical planet. The volume of a

sphere is 4
3πr

3, where r is the radius of the sphere.

Solution: There are a few ways to go about this. Perhaps the shortest is just to use Kepler’s law,

which we derived from the gravitational and centripetal forces in the first place, along with the fact

that the mass is M= 4
3πr

3ρ



T2 =
4π2

GM
r3 =

4π2

G4
3πr

3ρ
r3 =

3π

Gρ
(42)

T =

√
3π

Gρ
(43)

If you didn’t think to use Kepler’s law, you’d first start with T = 2πr/v and add the centripetal

force balance mv2/r=GMm/r2 (which you’d solve for v and plug in the equation for T). That will

bring you to Kepler’s law, at which point you proceed as above.

12. The period of the earth’s rotation about the sun is 365.256 days. It would be more convenient

to have a period of exactly 365 days. How should the mean distance from the sun be changed to

correct this anomaly?

Solution: What you don’t want to do is complicate this one with numbers right away, or it will

become messy. Symbolic solution first. Start with Kepler’s law, which relates period and orbital

distance. Consider the present case period T1 and orbital distance r1, and the hypothetical 365 day

year is T2 with orbital distance r2. Kepler’s law states

T2 =
4π2

GM
r3 (44)

That means T2 ∝ r3. Taking the ratio of T1 to T2 is perhaps the easiest thing to do.

T21
T22

=
r31
r32

(45)

r32 =

(
T2

T1

)2

r31 (46)

r2 = r1
3

√
T22
T21
≈ 0.9995r1 (47)

Moving the earth closer to the sun by about 0.05% will do the job. But wait, you say, we don’t

know what r1 is, so we don’t know how much the distance has to change by! Perhaps not, but you

can find r1 from the known period T1=365.256 days and the mass of the sun (given on the formula

sheet). Solving Kepler’s law for r1,

r1 =
3

√
GMsT

2
1

4π2
≈ 1.496× 1011 m (48)

Armed with this, you should find that the sun needs to move closer to the sun by about 7×107 m

13. The space shuttle releases a 470 kg satellite while in an orbit 280 km above the surface of the



earth. A rocket engine on the satellite boosts it to a geosynchronous orbit. How much energy is

required for the orbit boost? (Note: the earth’s radius is 6378 km, its mass is 5.98 × 1024 kg, and

G = 6.67× 10−11N ·m2kg−2. Hint: “geosynchronous” means the satellite’s period T is 24 hrs.)

Solution: For a geosynchronous orbit, the period T is 24 hr. Using Kepler’s law, we can find the

distance from the earth’s center for this orbit:

T2 =
4π2rg3

GMe
(49)

rg =
3

√
GMT2

4π2
≈ 42, 300 km (50)

Thus, the satellite changes its orbit to 42, 300 km starting from h=280 km above the earth’s surface,

a distance Re+h from the earth’s center. Remember that it is the distance from the earth’s center,

not its surface, which is important for gravitation. This will clearly change the satellite’s potential

energy, but its kinetic energy will also change. Fortunately, we know the total energy (kinetic plus

potential) of an orbiting body of mass m is Etot=−1
2
GMem

r . The change in energy is thus

∆Etot = −
1

2

GMem

rg
−

(
−

1

2

GMem

Re + h

)
≈ 1.2× 1010 J (51)

14. Calculate the mass of the Sun given that the Earth’s distance from the Sun is 1.496× 1011m.

(Hint: you already know the period of the Earth’s orbit.)

Solution: We know the earth’s period of rotation T is about 365 days, or about 3.15×107 s. Given

the earth’s orbital distance r, we can use Kepler’s law to find the mass of the sun Ms.

T2 =
4π2r3

GMs
(52)

Ms =
4π2r3

GT2
≈ 2× 1030 kg (53)


