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Instructions:

1. Answer all questions below. All questions have equal weight.

2. Due Fri 22 June 2012 at the start of lecture, or electronically by midnight.

3. You may collaborate, but everyone must turn in their own work.

1. An aircraft door closes by pushing it inside the airplane first. We will assume P = 0 outside
the aircraft, and P=0.9 atm inside during flight. If the sealing surface of the door is 5 cm wide all
around the door, and the door’s outer dimensions are 2 m by 0.7 m, what is the total force required
to open the door while in flight?

Solution: The force will be the sealing surface area times the pressure difference applied to it.
The sealing surface one can consider to be two strips of 2 m by 0.05 m and two strips of 0.6 m by
0.05 m, giving a net area of 0.26 m2.i The pressure difference is P=0.9 atm≈9.12× 104 Pa. Thus,

F = ∆PA ≈
(
9.12× 104 Pa

) (
0.26 m2

)
≈ 2.4× 104 N (1)

For comparison, note that the gravitational force required to lift a 1000 lb weight is only about
4.4× 103 N. In other words, even with a 5 cm sealing surface, there is no way you’re going to open
that door at altitude while the cabin is pressurized.

2. Viscosity of most fluids can be represented by an extra “drag” force on a body moving in a liquid.
For a body of spherical shape, the drag force is reasonably well approximated by Fdrag = 6πηRv,
where v is the velocity of the body and η is a parameter of the fluid. The presence of viscosity
leads to a “terminal velocity” of a body falling in a fluid (e.g., a person falling in air).

Consider a sphere of radius R and density ρs falling through a fluid of density ρ and viscosity
parameter η. Find an expression for the terminal velocity of the sphere.

Solution: Terminal velocity is when the the object in question reaches a constant maximum
velocity, which must be when the net force on the object is zero. Physically, the object’s speed has
become so high, and the corresponding drag force so great that it manages to balance the object’s
weight and any other forces. The weight of a sphere of radius R and density ρs is

Fw =
4
3
πR3ρsg (2)

iIf you came up with a slightly different area, that is not a problem - the geometry is not strictly defined in the
problem, so you had a choice to either add or subtract 5 cm from the given dimensions. Either way is fine, it does
not change the conclusion.



If we are in a surrounding fluid of density ρ, we must also account for the buoyant force, equal to
the weight of the displaced fluid. This is the same as the expression above if we substitute ρs → ρ

B =
4
3
πR3ρg (3)

The drag and buoyant forces will act in one direction, the weight of the object opposing them. A
force balance yields, at terminal velocity,

0 = Fd + B− Fw (4)

0 = 6πηRv+
4
3
πR3ρg−

4
3
πR3ρsg (5)

6πηRv =
4
3
πR3 (ρs − ρ)g (6)

v =
2g
9η
R2 (ρs − ρ) (7)

The fact that terminal velocity depends on particle size has many interesting technological ap-
plications. (As a quick for-instance: http://en.wikipedia.org/wiki/Fluidized_bed_reactor.)

3. A pendulum is formed by pivoting a long thin rod of mass M and length L about a point on
the rod. If the pivot is a distance x from the rod’s center, for what x is the period of the pendulum
minimum? The moment of inertia for a thin rod about its center of mass is I= 1

12ML
2.

Solution: In the end, we only have a physical pendulum, and we already know that the period is
given by

T = 2π

√
I

mgh

where I is the moment of inertia of the rod (of mass m) about the pivot point, and h is the distance
between the rod’s center of mass and the pivot point. Let the pivot be a distance x from the end
of the rod, making it a distance l/2−x from the center of mass. The moment of inertia is then

I = Icom +m

(
l

2
− x

)2

=
1
12
ml2 +m

(
l

2
− x

)2

The distance between the center of mass and the pivot is h= l/2−x, so

I =
1
12
ml2 +mh2

The period is thus

http://en.wikipedia.org/wiki/Fluidized_bed_reactor


T = 2π

√
1
12l

2 + h2

gh
= 2π

√
l2

12gh
+
h

g

We wish to find x such that T is a maximum, which means dT/dx=0. Noting that dT/dx=−dT/dh,

dT

dx
= −

dT

dh
= 0 (8)

d

dh

2π

√
1
12l

2 + h2

gh

 = 0 (9)

2π
(

1
2

)(
−l2

12gh2
+

1
g

)( 1
12l

2 + h2

gh

)−1/2

= 0 (10)

=⇒ −l2

12gh2
+

1
g

= 0 (11)

12h2 = l2 (12)

h =
l

2
√

3
≈ 0.29l (13)

A quick second derivative test or a plot of dT/dh verifies that this is indeed a minimum, not a
maximum. The minimum period is therefore

Tmin = T

∣∣∣∣
h= l

2
√

3

= 2π

√√√√ 1
12l

2 + 1
12l

2

g l
2
√

3

= 2π

√
l√
3g
≈ 2.26 s

4. A block of mass m is connected to two springs of force constants k1 and k2 as shown below. The
block moves on a frictionless table after it is displaced from equilibrium and released. Determine
the period of simple harmonic motion. (Hint: what is the total force on the block if it is displaced
by an amount x?

m

(a)

k1 k2

(b)

k1 k2

m

Figure P15.71
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spring, as shown in Figure P15.68. (a) Static extensions
of 17.0, 29.3, 35.3, 41.3, 47.1, and 49.3 cm are measured
for M values of 20.0, 40.0, 50.0, 60.0, 70.0, and 80.0 g, re-
spectively. Construct a graph of Mg versus x, and per-
form a linear least-squares fit to the data. From the slope
of your graph, determine a value for k for this spring.
(b) The system is now set into simple harmonic motion,
and periods are measured with a stopwatch. With
M ! 80.0 g, the total time for 10 oscillations is measured
to be 13.41 s. The experiment is repeated with M values
of 70.0, 60.0, 50.0, 40.0, and 20.0 g, with corresponding
times for 10 oscillations of 12.52, 11.67, 10.67, 9.62, and
7.03 s. Compute the experimental value for T from each
of these measurements. Plot a graph of T 2 versus M, and
determine a value for k from the slope of the linear least-
squares fit through the data points. Compare this value
of k with that obtained in part (a). (c) Obtain a value for
ms from your graph and compare it with the given value
of 7.40 g.

A smaller disk of radius r and mass m is attached rigidly to
the face of a second larger disk of radius R and mass M as
shown in Figure P15.69. The center of the small disk is
located at the edge of the large disk. The large disk is
mounted at its center on a frictionless axle. The assembly is
rotated through a small angle " from its equilibrium position
and released. (a) Show that the speed of the center of the
small disk as it passes through the equilibrium position is

(b) Show that the period of the motion is

T ! 2# ! (M $ 2m)R  2 $ mr  2

2mgR "1/2

v ! 2 ! Rg(1 % cos ")
(M/m) $ (r/R)2 $ 2 "

1/2

69.

70. Consider a damped oscillator as illustrated in Figures
15.21 and 15.22. Assume the mass is 375 g, the spring
constant is 100 N/m, and b ! 0.100 N & s/m. (a) How
long does it takes for the amplitude to drop to half its
initial value? (b) What If? How long does it take for the
mechanical energy to drop to half its initial value? 
(c) Show that, in general, the fractional rate at which the
amplitude decreases in a damped harmonic oscillator is
half the fractional rate at which the mechanical energy
decreases.

71. A block of mass m is connected to two springs of force con-
stants k1 and k2 as shown in Figures P15.71a and P15.71b.
In each case, the block moves on a frictionless table after it
is displaced from equilibrium and released. Show that in
the two cases the block exhibits simple harmonic motion
with periods

(b)      T ! 2# √ m
k1 $ k2

(a)      T ! 2# √ m(k1 $ k2)
k1k2

72. A lobsterman’s buoy is a solid wooden cylinder of radius r
and mass M. It is weighted at one end so that it floats up-
right in calm sea water, having density '. A passing shark
tugs on the slack rope mooring the buoy to a lobster trap,
pulling the buoy down a distance x from its equilibrium
position and releasing it. Show that the buoy will execute
simple harmonic motion if the resistive effects of the
water are neglected, and determine the period of the
oscillations.

73. Consider a bob on a light stiff rod, forming a simple
pendulum of length L ! 1.20 m. It is displaced from the
vertical by an angle "max and then released. Predict the
subsequent angular positions if "max is small or if it is large.
Proceed as follows: Set up and carry out a numerical
method to integrate the equation of motion for the simple
pendulum:

d  2"

dt2 ! %
g
L

 sin "

R

M

θθ

mv

Figure P15.69

m

Figure P15.68

Solution: Say we displace the block to the right by an amount x. Both springs will try to bring
the block back toward equilibrium - one will pull, one will push, but both will act in the same
direction. That means the net force is

Fnet = −k1x− k2x = −(k1 + k2) x = ma (14)



This is exactly the same as what we would find for a single spring, except the spring constant has
become k1 + k2 rather than just k. The solution must be

T =
2π
ω

= 2π
√

m

k1 + k2
(15)

5. A horizontal plank of mass m and length L is pivoted at one end. The plank’s other end is
supported by a spring of force constant k. The moment of inertia of the plank about the pivot is
I = 1

3mL
2. The plank is displaced by a small angle θ from horizontal equilibrium and released.

Find the angular frequency ω of simple harmonic motion. (Hint: consider the torques about the
pivot point.)
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of the system for small values of the amplitude (small !).
Assume the vertical suspension of length L is rigid, but ig-
nore its mass.

60. A particle with a mass of 0.500 kg is attached to a spring
with a force constant of 50.0 N/m. At time t " 0 the
particle has its maximum speed of 20.0 m/s and is moving
to the left. (a) Determine the particle’s equation of 
motion, specifying its position as a function of time. 
(b) Where in the motion is the potential energy three
times the kinetic energy? (c) Find the length of a simple
pendulum with the same period. (d) Find the minimum
time interval required for the particle to move from x " 0
to x " 1.00 m.

61. A horizontal plank of mass m and length L is pivoted at one
end. The plank’s other end is supported by a spring of force
constant k (Fig P15.61). The moment of inertia of the plank
about the pivot is mL2. The plank is displaced by a small an-
gle ! from its horizontal equilibrium position and released.
(a) Show that it moves with simple harmonic motion with an
angular frequency . (b) Evaluate the frequency if
the mass is 5.00 kg and the spring has a force constant of
100 N/m.

# " √3k/m

1
3 

62. Review problem. A particle of mass 4.00 kg is attached to
a spring with a force constant of 100 N/m. It is oscillating
on a horizontal frictionless surface with an amplitude of
2.00 m. A 6.00-kg object is dropped vertically on top of the
4.00-kg object as it passes through its equilibrium point.
The two objects stick together. (a) By how much does the
amplitude of the vibrating system change as a result of the
collision? (b) By how much does the period change?
(c) By how much does the energy change? (d) Account for
the change in energy.

A simple pendulum with a length of 2.23 m and a mass of
6.74 kg is given an initial speed of 2.06 m/s at its equilib-
rium position. Assume it undergoes simple harmonic
motion, and determine its (a) period, (b) total energy, and
(c) maximum angular displacement.

64. Review problem. One end of a light spring with force con-
stant 100 N/m is attached to a vertical wall. A light string is
tied to the other end of the horizontal spring. The string
changes from horizontal to vertical as it passes over a solid
pulley of diameter 4.00 cm. The pulley is free to turn on a
fixed smooth axle. The vertical section of the string sup-
ports a 200-g object. The string does not slip at its contact
with the pulley. Find the frequency of oscillation of the
object if the mass of the pulley is (a) negligible, (b) 250 g,
and (c) 750 g.

63.

65. People who ride motorcycles and bicycles learn to look out
for bumps in the road, and especially for washboarding, a
condition in which many equally spaced ridges are worn
into the road. What is so bad about washboarding? A mo-
torcycle has several springs and shock absorbers in its sus-
pension, but you can model it as a single spring supporting
a block. You can estimate the force constant by thinking
about how far the spring compresses when a big biker sits
down on the seat. A motorcyclist traveling at highway
speed must be particularly careful of washboard bumps
that are a certain distance apart. What is the order of mag-
nitude of their separation distance? State the quantities
you take as data and the values you measure or estimate
for them.

66. A block of mass M is connected to a spring of mass m
and oscillates in simple harmonic motion on a horizon-
tal, frictionless track (Fig. P15.66). The force constant of
the spring is k and the equilibrium length is !. Assume
that all portions of the spring oscillate in phase and that
the velocity of a segment dx is proportional to the dis-
tance x from the fixed end; that is, vx " (x/!)v. Also,
note that the mass of a segment of the spring
is dm " (m/!)dx. Find (a) the kinetic energy of the
system when the block has a speed v and (b) the period
of oscillation.

Pivot

θ

k

Figure P15.61

x

dx

M

v

Figure P15.66

A ball of mass m is connected to two rubber bands of
length L, each under tension T, as in Figure P15.67. The
ball is displaced by a small distance y perpendicular to the
length of the rubber bands. Assuming that the tension
does not change, show that (a) the restoring force
is $ (2T/L)y and (b) the system exhibits simple harmonic 
motion with an angular frequency .# " √2T/mL

67.

y

L L

Figure P15.67

68. When a block of mass M, connected to the end of a
spring of mass ms " 7.40 g and force constant k, is set into
simple harmonic motion, the period of its motion is 

A two-part experiment is conducted with the use of
blocks of various masses suspended vertically from the

% " 2& √ M ' (ms/3)
k

Solution: The presence of a pivot point – even labeled as such – immediately suggests the use of
torque to solve this problem. First, we need to find the compression of the spring at equilibrium,
i.e., θ= 0. Since the plank has non-zero mass, even without an angular displacement the spring
must be compressed by some amount at equilibrium. Once we have found the equilibrium position,
we can worry about the torques when a small angular displacement θ is applied.

Let counterclockwise rotations be defined as positive, and let the equilibrium position of the spring
correspond to the tip of the plank being at vertical position xo relative to its unstretched length.
The sum of the torques about the pivot point at equilibrium (θ= 0) is given by considering the
weight of the plank acting about its center of mass and the restoring force of the spring. The plank
may be treated as a point mass a distance L/2 from the pivot point, while the spring force acts at
a distance L. At equilibrium, the net torque must be zero.

∑
τ = −mg

(
L

2

)
+ kxoL = 0 (16)

xo =
mg

2k
(17)

Now that we have the equilibrium position, we can find the torques when the plank makes an angle
θ with the vertical. Since the plank cannot change its length (we assume), the amount that the
spring stretches should correspond to the arc length that the tip of the plank moves through, Lθ,



if the angle is relatively small.ii The spring is therefore displaced by an amount Lθ − xo from its
unstretched length. This gives us the spring’s restoring force. Since the spring is attached to the
plank, the spring force always acts perpendicularly to the length of the plank at distance L, and
the torque is easily found.

The plank’s weight still acts at a distance L/2 from the center of mass, but now at an angle 90 − θ

relative to the axis of the plank. The overall torque is then

∑
τ = −mg

(
L

2

)
sin (90 − θ) − k (Lθ− xo)L = −

1
2
mgL cos θ− kL2θ+ kxoL

Since the angle θ is small, we may approximate cos θ≈1, and we may also make use of our earlier
expression for xo. Finally, out of equilibrium the torques must give the moment of inertia times
the angular acceleration.

∑
τ = −

1
2
mgL cos θ− kL2θ+ kxoL ≈ −

1
2
mgL− kL2θ+

1
2
mgL = −kL2θ = Iα (18)

−kL2θ = I
d2θ

dt2
(19)

Noting that I= 1
3mL

2 for a thin plank, we can put the last equation in the desired form for simple
harmonic motion in terms of known quantities:

d2θ

dt2
= −

3k
m
θ (20)

ω =

√
3k
m

(21)

Note that the length of the plank does not matter at all.

iiSmall enough such that we don’t have to worry about the spring bending to the left, for one.


