University of Alabama

Department of Physics and Astronomy
PH 105 LeClair

Problem Set 4

Instructions:

1. Answer all questions below. All questions have equal weight.
2. All problems are due Tues 5 June 2012 at the start of lecture.
3. You may collaborate, but everyone must turn in their own work.
4. A 3.00 kg object is moving in a plane, with its x and y coordinates in meters given by $x=5 t^{2}-1$ and $y=3 t^{3}+2$, where t is in seconds. What is the magnitude of the net force acting on this object at $\mathrm{t}=2.00 \mathrm{~s}$?
5. A traffic light weighing $\mathrm{mg}=123 \mathrm{~N}$ hangs from a cable tied to two other cables fastened to a support, as in the figure below. The upper cables make angles of $\theta_{1}=40^{\circ}$ and $\theta_{2}=50^{\circ}$ with the horizontal. Find the magnitudes of $\overrightarrow{\mathbf{T}}_{1}, \overrightarrow{\mathbf{T}}_{2}$, and $\overrightarrow{\mathbf{T}}_{3}$.

6. Two blocks of masses m_{1} and $m_{2}\left(m_{1}>m_{2}\right)$ are placed in contact on a horizontal, frictionless surface, as shown in the figure below. A constant horizontal force of $\overrightarrow{\mathbf{F}}=115 \mathrm{~N}$ is applied to m_{1} as shown. Find the magnitude of the acceleration of the two blocks.

(a)

(b)

(c)
