University of Alabama

Department of Physics and Astronomy

Problem Set 4

Instructions:

1. Answer all questions below. All questions have equal weight.
2. All problems are due Tues 5 June 2012 at the start of lecture.
3. You may collaborate, but everyone must turn in their own work.
4. A 3.00 kg object is moving in a plane, with its x and y coordinates in meters given by $x=5 t^{2}-1$ and $y=3 t^{3}+2$, where t is in seconds. What is the magnitude of the net force acting on this object at $\mathrm{t}=2.00 \mathrm{~s}$?

Solution: If we can get the acceleration, we can get the force. Since we have the position as a function of time, finding the components of acceleration is no big deal:

$$
\begin{align*}
& a_{x}=\frac{d^{2} x}{{d t^{2}}^{2}}=10 \tag{1}\\
& a_{y}=\frac{d^{2} y}{{d t^{2}}^{2}}=18 \mathrm{t} \tag{2}
\end{align*}
$$

The magnitude of the force depends on the magnitude of the acceleration, so we'd better find it:

$$
\begin{equation*}
|\overrightarrow{\mathbf{a}}|=\sqrt{\mathrm{a}_{x}^{2}+\mathrm{a}_{\mathrm{y}}^{2}}=\sqrt{10^{2}+18^{2} \mathrm{t}^{2}} \tag{3}
\end{equation*}
$$

Newton's second law tells us that mass times acceleration is the net force, so:

$$
\begin{equation*}
|\overrightarrow{\mathbf{F}}|=\mathrm{m}|\overrightarrow{\mathbf{a}}|=\mathrm{m} \sqrt{10^{2}+18^{2} \mathrm{t}^{2}} \approx 112 \mathrm{~N} \tag{4}
\end{equation*}
$$

2. A traffic light weighing $\mathrm{mg}=123 \mathrm{~N}$ hangs from a cable tied to two other cables fastened to a support, as in the figure below. The upper cables make angles of $\theta_{1}=40^{\circ}$ and $\theta_{2}=50^{\circ}$ with the horizontal. Find the magnitudes of $\overrightarrow{\mathbf{T}}_{1}, \overrightarrow{\mathbf{T}}_{2}$, and $\overrightarrow{\mathbf{T}}_{3}$.

Solution: The cable T_{3} has to support the traffic light's entire weight, so we must have $\mathrm{T}_{3}=123 \mathrm{~N}$. A free-body diagram at the point where the three cables meet gives us horizontal and vertical forces, which much each sum to zero if the traffic light is to stay put.

$$
\begin{align*}
\text { horizontal: } & \sum F_{x}=T_{2} \cos \theta_{2}-T_{1} \cos \theta_{1}=0 \tag{5}\\
\text { vertical: } & \sum F_{y}=T_{1} \sin \theta_{1}+T_{2} \sin \theta_{2}-T_{3}=0 \tag{6}
\end{align*}
$$

Two equations and two unknowns. Let's solve the first for T_{1} an plug it in the second:

$$
\begin{align*}
\text { from 5. } & \mathrm{T}_{2}=\mathrm{T}_{1} \frac{\cos \theta_{1}}{\cos \theta_{2}} \tag{7}\\
\text { plug into 6; } & 0=\mathrm{T}_{1} \sin \theta_{1}+\left(\mathrm{T}_{1} \frac{\cos \theta_{1}}{\cos \theta_{2}}\right) \sin \theta_{2}-\mathrm{T}_{3} \tag{8}
\end{align*}
$$

Solving for T_{1}, since we know T_{3} already,

$$
\begin{align*}
& \mathrm{T}_{3}=\mathrm{T}_{1}\left(\sin \theta_{1}+\cos \theta_{1} \tan \theta_{2}\right) \tag{9}\\
& \mathrm{T}_{1}=\frac{\mathrm{T}_{3}}{\sin \theta_{1}+\cos \theta_{1} \tan \theta_{2}} \approx 79.06 \mathrm{~N} \tag{10}
\end{align*}
$$

Using 7 , we can find T_{2} now:

$$
\begin{align*}
T_{2} & =T_{1} \frac{\cos \theta_{1}}{\cos \theta_{2}}=T_{3} \frac{\cos \theta_{1}}{\sin \theta_{1} \cos \theta_{2}+\cos \theta_{1} \cos \theta_{2} \tan \theta_{2}}=T_{3} \frac{\cos \theta_{1}}{\sin \theta_{1} \cos \theta_{2}+\cos \theta_{1} \sin \theta_{2}} \tag{11}\\
& =\frac{T_{3}}{\tan \theta_{1} \cos \theta_{2}+\sin \theta_{2}} \approx 94.2 \mathrm{~N} \tag{12}
\end{align*}
$$

Note T_{2} and T_{1} are both less than T_{3}, as they must be.
3. Two blocks of masses m_{1} and $m_{2}\left(m_{1}>m_{2}\right)$ are placed in contact on a horizontal, frictionless surface, as shown in the figure below. A constant horizontal force of $\overrightarrow{\mathbf{F}}=115 \mathrm{~N}$ is applied to m_{1} as shown. Find the magnitude of the acceleration of the two blocks.

Solution: The blocks move together, so this is equivalent to a single mass $\mathrm{m}_{1}+\mathrm{m}_{2}$ moving under the influence of F. The acceleration is thus $a=F /\left(m_{1}+m_{2}\right)$.

