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Problem Set 7 Solutions

1. The potential energy of an Argon dimer may be modeled by

U(r) = 4ε
(
σ12

r12
−
σ6

r6

)

(a) Find the equilibrium separation of the dimer (i.e., the value of r at equilibrium).
(b) Is the equilibrium stable? Justify your answer.

Solution: Equilibrium is defined by a net zero force, or equivalently, a minimum in potential
energy. Either way,

−F =
dU

dr
= 4ε

(
−

12σ12

r13
+

6σ6

r7

)
= 0 (1)

Solving,

12σ12

r13
=

6σ6

r7
(2)

2σ6

r6
= 1 (3)

req =
6
√

2σ (4)

To see whether it is stable or not, we should see if the U(r) curve is concave upward (stable) or
downward (not). This means applying the second derivative test. We know dU

dr

∣∣
req

=0, and if it is

also true that d2U
dr2

∣∣
req
<0, we have found a minimum at req and the equilibrium is stable.
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We don’t even need to know σ or ε: the result is negative so long as they are both positive constants,
so d2U

dr2

∣∣
req
<0 is true everywhere. Thus, we have found a stable equilibrium at req.



2. Consider the setup below with two springs connected to a mass on a frictionless table. Find an
expression for the potential energy as a function of the displacement along the x axis, U(x). (Hint:
consider the limiting cases L→ 0 and x→ 0 to check your solution. Also note that F = −dU

dx ...)

Solution: Since potential energy is a scalar, we can just add the potential energies for the two
springs together. Since the two springs are identical, we can just figure out the potential energy of
one of them and double it.

We can proceed two ways: calculate the forces in the x direction, and integrate to get U(x), or
noting that Uspring = 1

2k (∆x)2 and calculating U(x) directly. We will take the latter approach, since
it seems dramatically less tedious.

When x= 0, both springs have a length L. As soon as we pull on the mass and move it to some
x 6= 0, we can find the new length of the spring from simple geometry as

√
x2 + L2. The difference

between these two lengths is how much the spring is stretched, and this difference ∆x gives us U(x):

U(x) = Uspring1 +Uspring2

= 2Uspring1 = 2
(

1
2
k (∆x)2

)
= k (∆x)2

= k
(√

x2 + L2 − L
)2

= kL2 + kx2 − 2kl
√
x2 + L2

= kx2 + 2kL
(
L−

√
L2 + x2

)
We can note that as x → 0, we get U → 0, which makes sense as the springs are not stretched
when x=0. If we let L→ 0, the springs are horizontal, and only stretched by a distance x, and the
energy is just 2× 1

2kx
2 as it must be.

3. A block having a mass of 0.80 kg is given an initial velocity of vA = 1.2 m/s to the right and
collides with a spring of negligible mass and force constant k = 50 N/m. Assuming the surface to
be frictionless, what is the maximum compression of the spring after the collision?



Solution: Conservation of energy once again. The initial kinetic energy of the block is converted
into potential energy stored in the spring. At the point when the spring has “absorbed” all the
mass’ initial kinetic energy, the mass momentarily stops before the spring begins pushing it back.

Ki +Ui = Kf +Uf

1
2
mv2A + 0 = 0 +

1
2
k (∆x)2

m

k
v2A = (∆x)2

∆x =

√
m

k
vA =

√
0.8 kg

50 N/m
(1.2 m/s) ≈ 0.15 m


