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1. A cockroach with mass m rides on a disk of mass 6.00m and radius R. The disk rotates like a
merry-go-round around its central axis at angular speed ωi =1.50 rad/s. The cockroach is initially
at radius r=0.800R, but then it crawls out to the rim of the disk. Treat the cockroach as a particle.
What then is the angular speed?

Solution: The key to this problem is conservation of angular momentum. Strictly speaking, we
can’t use conservation of energy. In order to walk across the disc the roach must be doing work, and
it would then not be true that the initial and final kinetic energies are the same - they will not be.
Instead, we need to recognize that when the roach moves to the edge of the disc, the system’s total
mass is now distributed farther from the center of rotation. This changes the moment of inertia,
which must then change the angular momentum.

First, we can write the moment of inertia in the initial and final state. The moment of inertia of a
disc is well known, and we may treat the roach as a point particle. Thus, we need only know the
radius of the disc, the position of the roach, and the masses of the disc and roach. For now, let the
disc have mass M and the roach mass m, with the roach’s initial position as βR (so β=0.800).

Itotal = Idisc + Iroach (1)
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1
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MR2 +MR2 (3)

Angular momentum is L= Iω. Since the moment of inertia changes from the initial to final state,
for angular momentum to be conserved it is clear that ω must change as well. Let the initial and
final angular velocities be ωi and ωf, respectively. Conservation of angular momentum implies:
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Given β=0.800, M=6.00m, and ωi =1.50 rad/s, we find ωf≈1.37 rad/s.

A conservation of energy-based approach would get right the fact that the speed of the disc decreases
owing to an increase of the moment of inertia. What it would neglect is the fraction of the initial



energy that would be ‘used’ as work done by the roach on the disc in moving toward the rim.
Neglecting this ascribes more kinetic energy to the disc and roach in the final situation than
is warranted, and we would overestimate the angular velocity. Since the mass of the roach is
comparatively small, the error in neglecting the work done by the roach is not severe, of order
(m/M) or a bit over 15%.

2. A long uniform rod of length L and mass M is pivoted about a horizontal, frictionless pin
through one end. The rod is released from rest in a vertical position. At the instant the rod is
horizontal, find its angular speed. The moment of inertia of a solid rod about its center of mass is
I = 1

12ML
2.

Solution: In this case, conservation of energy is the way to go - gravitational potential energy is
being converted to rotational kinetic energy. The change in gravitational potential energy can be
found by treating the rod as a point particle of mass M located at the rod’s center of mass, and
seeing how the center of mass height changes. The center of mass of the rod changes by L/2 going
from vertical to horizontal, so the change in gravitational potential energy is just MgL/2.

This gravitational energy will be converted to rotational kinetic energy, which we know is just 1
2Iω

2.
However, the rod is rotating about its endpoint, not its center, so we have the wrong moment of
inertia. Rotating about an endpoint is just rotating about a parallel axis a distance L/2 from the
center, so we can easily find the moment of inertia about the endpoint from the given one for
rotation about the center:
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What is left is just to relate kinetic and potential energy:
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=⇒ ω =
3g
L

(8)

Could you have used torque? Sure. This would have found you the angular acceleration α=dω/dt,
from which you could find ω. However, the angular acceleration is not constant as the rod is falling,
as it will explicitly depend on the angle the rod makes with the vertical! This means you can’t use
the simple equations we normally use for constant acceleration, and matters are more complicated.
Best to use energy when you can get away with it.

3. A solid sphere of mass m and radius r rolls without slipping along the track shown below. It
starts from rest with the lowest point of the sphere at a height h above the bottom of the loop of
radius R, much larger than r. What is the minimum value of h (in terms of R) such that the sphere
completes the loop? Do not ignore the rotational kinetic energy . . . The moment of inertia for a



solid sphere is I = 2
5mr

2.

As a result of friction, the angular speed of a wheel
changes with time according to

where !0 and " are constants. The angular speed changes
from 3.50 rad/s at t # 0 to 2.00 rad/s at t # 9.30 s. Use
this information to determine " and !0. Then determine
(a) the magnitude of the angular acceleration at
t # 3.00 s, (b) the number of revolutions the wheel makes
in the first 2.50 s, and (c) the number of revolutions it
makes before coming to rest.

74. The hour hand and the minute hand of Big Ben, the
Parliament tower clock in London, are 2.70 m and 4.50 m
long and have masses of 60.0 kg and 100 kg, respectively
(see Figure P10.40). (a) Determine the total torque due to
the weight of these hands about the axis of rotation when
the time reads (i) 3:00 (ii) 5:15 (iii) 6:00 (iv) 8:20 (v) 9:45.
(You may model the hands as long, thin uniform rods.)
(b) Determine all times when the total torque about the
axis of rotation is zero. Determine the times to the nearest
second, solving a transcendental equation numerically.

75. (a) Without the wheels, a bicycle frame has a mass of
8.44 kg. Each of the wheels can be roughly modeled as a
uniform solid disk with a mass of 0.820 kg and a radius of
0.343 m. Find the kinetic energy of the whole bicycle when
it is moving forward at 3.35 m/s. (b) Before the invention
of a wheel turning on an axle, ancient people moved heavy
loads by placing rollers under them. (Modern people use
rollers too. Any hardware store will sell you a roller bear-
ing for a lazy susan.) A stone block of mass 844 kg moves
forward at 0.335 m/s, supported by two uniform cylindri-
cal tree trunks, each of mass 82.0 kg and radius 0.343 m.
No slipping occurs between the block and the rollers or
between the rollers and the ground. Find the total kinetic
energy of the moving objects. 

76. A uniform solid sphere of radius r is placed on the inside
surface of a hemispherical bowl with much larger radius R.
The sphere is released from rest at an angle $ to the verti-
cal and rolls without slipping (Fig. P10.76). Determine the
angular speed of the sphere when it reaches the bottom of
the bowl. 

d$

dt
# !0e%"t

73.

A string is wound around a uniform disk of radius R and
mass M. The disk is released from rest with the string verti-
cal and its top end tied to a fixed bar (Fig. P10.77). Show
that (a) the tension in the string is one third of the weight

77.

of the disk, (b) the magnitude of the acceleration of the
center of mass is 2g/3, and (c) the speed of the center of
mass is (4gh/3)1/2 after the disk has descended through
distance h. Verify your answer to (c) using the energy
approach.

78. A constant horizontal force F is applied to a lawn roller in
the form of a uniform solid cylinder of radius R and mass
M (Fig. P10.78). If the roller rolls without slipping on the
horizontal surface, show that (a) the acceleration of the
center of mass is 2F/3M and (b) the minimum coefficient
of friction necessary to prevent slipping is F/3Mg. (Hint:
Take the torque with respect to the center of mass.)

79. A solid sphere of mass m and radius r rolls without slipping
along the track shown in Figure P10.79. It starts from rest
with the lowest point of the sphere at height h above the
bottom of the loop of radius R , much larger than r. 
(a) What is the minimum value of h (in terms of R) such
that the sphere completes the loop? (b) What are the
force components on the sphere at the point P if h # 3R?
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Solution: Conservation of energy will allow us to find the velocity at the top of the loop, and we
can find the minimum velocity required to stay on the track by considering the forces at the top of
the loop. Comparing the two will give us an expression for h in terms of R. In fact, we’ve already
done this problem for point masses, all we really need to do differently is keep track of rotational
kinetic energy. First, conservation of energy.

Let the ground level be our zero point for potential energy. Before the mass is released, it has
only potential energy based on its height h above the ground. At the top of the loop, it still has
potential energy due to its height 2R above the ground, but now also has linear kinetic energy due
to the motion of its center of mass at speed vcm and rotational kinetic energy due to its rotating
at angular velocity ω.

mgh =
1
2
mv2cm +

1
2
Iω2 +mg (2R) (9)

mg (h− 2R) =
1
2
m

(
v2cm + Iω2

)
(10)

We can relate vcm and ω by noting that the horizontal distance the sphere covers in rolling through
θ radians is the arclength of the circle through the same angle, rθ, and the angle θ at constant
angular velocity is ωt. Since the horizontal distance covered is also vcmt, we have rωt= vcmt, or
ω=vcm/r.

mg (h− 2R) =
1
2
m

(
v2cm + I

v2

r2

)
(11)

2g (h− 2R) = v2
(

1 +
I

mr2

)
(12)

v2 =
2g (h− 2R)

1 + I/mr2
(13)

This is the actual speed the sphere will have at the top of the loop. We must compare this to the
minimum speed required by centripetal acceleration. At the top of the loop, the only two forces
will be the sphere’s weight mg and the normal force Fn, both pointing downward toward the center



of the circle. These two forces must equal the centripetal force required to stay on the track, which
also acts downward toward the center of the circle:

∑
F = mg+ Fn =

mv2

R
(14)

Fn =
mv2

R
−mg (15)

The sphere will stay on the track so long as the normal force is positive, i.e., when

v2 > Rg (16)

The actual speed of the sphere must be larger than this. Using the speed we found, we can solve
for h to find the minimum requisite height.

v2 =
2g (h− 2R)

1 + I/mr2
> Rg (17)
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)
(18)
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h > R
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Noting that I= 2
5mr

2, I/2mr2 = 1
5 , so

h > R
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2 +

1
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+
1
5

)
=

27
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R = 2.7R (21)


