
PH 105 / LeClair Fall 2015

Example force problems

1. An advertisement claims that a particular automobile can “stop on a dime.” What net force
would actually be necessary to stop a 850 kg automobile traveling initially at 45.0 km/h in a distance
equal to the diameter of a dime, which is 1.8 cm. Hint: watch the units!

Solution: We know the initial velocity vo = 45 km/h= 12.5m/s, the final velocity vf = 0, and the
distance over which the car accelerated, ∆x=0.018m. This is enough to get us the net acceleration,
which is then enough to get us the net force using Newton’s second law. First the acceleration:

v2
f = v2

o + 2a∆x (1)

a = − v2
o

2∆x (2)

The minus sign reminds us that the acceleration is in the direction opposite ∆x. If this is the net
acceleration, the net force causing it must follow F =ma, so the net force is in magnitude (i.e., we
don’t care about the sign)

|Fnet| = ma = mv2
o

2∆x ≈ 3.7× 106 N ≈ 415 tons (3)

A scary, unsurvivable amount of force, equivalent to pulling about 440 g’s (where 50 g’s generally
means serious injury or death).

2. A block of mass m=5.00 kg is pulled along a horizontal frictionless floor by a cord that exerts
a force of magnitude F = 12.0N at an angle of 65◦ with respect to horizontal. (a) What is the
magnitude of the block’s acceleration? (b) The force magnitude F is slowly increased. What is its
value just before the block is lifted off the floor?

Solution: Given: A block pulled along a frictionless floor by a force making an angle θ with the
horizontal.

Find: The block’s acceleration, the maximum force before the block leaves the floor, and the
block’s acceleration at that point.

Sketch: Let the x and y axes be horizontal and vertical, respectively. We have only the block’s
weight, the normal force, and the applied force.
Relevant equations: We need only Newton’s second law and geometry.

Symbolic solution: Along the vertical direction, a force balance must give zero for the block to
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remain on the floor. This immediately yields the normal force.

∑
Fy = Fn −mg + F sin θ = 0 =⇒ Fn = mg − F sin θ (4)

A horizontal force balance gives us the acceleration:

∑
Fx = F cos θ = max =⇒ ax = F

m
cos θ (5)

If the magnitude of the force is increased, the block will leave the floor as the normal force
becomes zero:

Fn = mg − F sin θ = 0 =⇒ F = mg

sin θ (6)

At that point, its acceleration will be

ax = F

m
cos θ = g

tan θ (7)

Numeric solution: Using the numbers given, the initial acceleration is

ax = F

m
cos θ = 12.0N

5.00 kg cos 65◦ ≈ 1.01m/s2 (8)

At the point the block is about to leave the floor, the required force is

F = mg

sin θ = (5.00 kg)
(
9.81m/s2)

sin 65◦ ≈ 54N (9)

3. NOTE: you should draw free-body diagram for a mass on an inclined plane to show that
a=−g sin θ. They should know this, but need to see the vector components work out.

A block is projected up a frictionless inclined plane with an initial speed of vo = 2.50m/s. The
angle of incline is θ=17.0◦. (a) How far up the plane does the block go? (b) How long does it take
to get there? (c) What is its speed when it gets back to the bottom?



Solution: By considering the forces involved, we know that the acceleration of the block, pointing
down the ramp, is −g sin θ. If it is to travel a distance d up the ramp given an initial velocity vi,
and reach final velocity vf =0, then:

v2
f − v2

i = 2ad = −2gd sin θ (10)

d = v2
i

2g sin θ ≈ 1.09m (11)

Since we know the acceleration and initial velocity, we can find the time readily.

v(t) = vi + at = vi − gt sin θ = vf = 0 (12)

t = vi

g sin θ ≈ 0.87 s (13)

What is the speed at the bottom? Same as it was on the way up (since we have no friction). We
can verify that, noting that moving down the ramp the acceleration is now a= +g sin θ, and the
mass moves through distance d starting from rest:

v2
f − v2

i = 2gd sin θ (14)

v2
f = 2gd sin θ = 2g

(
v2

i

2g sin θ

)
sin θ = v2

i (15)

vf = |vi| (16)

4. In the figure below, three ballot boxes are connected by cords, one of which wraps over a
pulley having negligible friction on its axle and negligible mass. The three masses are ma =30.0 kg,
mb =40.0 kg, and mc =10.0 kg. When the assembly is released from rest, (a) what is the tension in
the cord connecting B and C, and (b) how far does A move in the first 0.250 s (assuming it does
not reach the pulley)? The table may be assumed to be frictionless.

A

B

C

Figure 1: Three boxes connected by cords, one of which wraps over a pulley.



Solution: Let the tension in the cord connecting B and C be Tbc, and the tension in the cord
connecting B and A be Tba. Mass C has only two forces acting on it: Tbc and its weight mcg.
Clearly the acceleration is downward, in the same direction as the weight and opposite the tension.

Tbc −mcg = −mca (17)

Mass A has only one force acting on it, the tension Tab, giving

Tab = maa (18)

This is not quite enough information. However, since B and C are connected together, we may
treat them, from the point of view of the upper cord, as a single mass (mb +mc) connected to mass
A. There are two forces acting on B and C connected together: their weight, and the tension Tab.
Thus,

Tab − (mb +mc) g = − (mb +mc) a (19)

Since we already know Tab =maa,

maa− (mb +mc) g = − (mb +mc) a (20)

a =
[

mb +mc

ma +mb +mc

]
g = 5

8g ≈ 6.13m/s2 (21)

The desired tension is readily found now, since Tbc =mc (g − a)

Tbc = mcg −mc

[
mb +mc

ma +mb +mc

]
g =

[
mcma +mcmb +m2

c −mcmb −m2
c

ma +mb +mc

]
(22)

Tbc = g

[
mcma

ma +mb +mc

]
≈ 36.8N (23)

Given an acceleration a, the distance traveled in time t is readily found.

∆x = 1
2at

2 ≈ 0.192m (24)

5. A projectile is launched with initial velocity ~vi from the start of a ramp, with the ramp making
an angle ϕ with respect to the horizontal. The projectile is launched with an angle θ > ϕ with
respect to the horizontal. At what position along the ramp does the projectile land?

Solution: Find: The point at which a projectile launched from the base of a ramp inclined at
angle ϕ hits the ramp.
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Figure 2: A projectile is launched onto a ramp.

Given: The projectile’s launch speed and angle, the ramp angle.

Sketch: Let the origin be at the projectile’s launch position, with the x and y axes of a cartesian
coordinate system aligned as shown below.

θ ϕ
v⃗i tanϕ =

dy

dx
= slope

Figure 3: Where does the projectile hit the ramp?

Thus ramp begins at position (0, 0), and the projectile is launched from (0, 0). We seek the inter-
section of the projectile’s trajectory with the surface of the ramp at position (xhit, yhit), subject to
the condition that yhit≥0, i.e., the projectile actually reaches the ramp.

Relevant equations: We have already derived the trajectory y(x) for a projectile launched from
the origin:

yp = x tan θ − gx2

2|~vi|2 cos2 θ
(25)

The ramp itself can be described by a simple line. We know the slope m of the ramp is m =
∆x/∆y=tanϕ, and we know it intersects the point (xo, yo)=(0, 0). This is sufficient to derive an
equation of the line describing the ramp’s surface, yr(x), using point-slope form:



yr − yo = m (x− xo)

yr = (tanϕ)x

The distance l the projectile goes along the ramp surface is found simply from (xhit, yhit) or xhit

and ϕ:

l =
√
x2

hit + y2
hit or l = x

cosϕ (26)

We also need a sanity condition to check that the projectile actually hits the ramp, which means
we require yhit>0 and xhit>0. Finally, the point of intersection must occur when yr =yp≡yhit.

Symbolic solution: We need only impose the condition yr = yp to begin our solution. The
resulting x value is the xhit we desire.

yr = x tanϕ = yp = x tan θ − gx2

2|~vi|2 cos2 θ
note x = l cosϕ (27)

l cosϕ tanϕ = l cosϕ tan θ − gl2 cos2 ϕ

2|~vi|2 cos2 θ
(28)

tanϕ = tan θ − gl cosϕ
2|~vi|2 cos2 θ

(29)

l = 2|~vi|2 cos2 θ

g cosϕ (tan θ − tanϕ) = 2|~vi|2 cos θ
g cosϕ (sin θ − tanϕ cos θ) (30)

l = 2|~vi|2 cos θ
g cos2 ϕ

(sin θ cosϕ− sinϕ cos θ) = 2|~vi|2 cos θ sin (θ − ϕ)
g cos2 ϕ

(31)

(32)

As we should expect, the distance up the ramp depends on the relative angle between the ramp
and launch, θ−ϕ. We could have found this result a bit quicker if we had noted the identity (which
we basically just derived).

tan θ − tanϕ = sin (θ − ϕ)
cos θ cosϕ (33)

6. A 3.00 kg object is moving in a plane, with its x and y coordinates in meters given by x(t) =
5t2 − 1 and y(t) = 3t3 + 2, where t is in seconds. What is the magnitude of the net force acting on
this object at t = 2.00 s?

Solution: If we can get the acceleration, we can get the force. Since we have the position as a
function of time, finding the components of acceleration is no big deal:



ax = d2x

dt2
= 10 (34)

ay = d2y

dt2
= 18t (35)

The magnitude of the force depends on the magnitude of the acceleration, so we’d better find it:

|~a| =
√
a2

x + a2
y =

√
102 + 182t2 (36)

Newton’s second law tells us that mass times acceleration is the net force, so:

|~F| = m|~a| = m
√

102 + 182t2 ≈ 112N (37)

7. A traffic light weighing mg= 123N hangs from a cable tied to two other cables fastened to a
support, as in the figure below. The upper cables make angles of θ1 = 40◦ and θ2 = 50◦ with the
horizontal. Find the magnitudes of ~T1, ~T2, and ~T3.

Solution: The cable T3 has to support the traffic light’s entire weight, so we must have T3 =123N.
A free-body diagram at the point where the three cables meet gives us horizontal and vertical
forces, which much each sum to zero if the traffic light is to stay put.

horizontal:
∑

Fx = T2 cos θ2 − T1 cos θ1 = 0 (38)

vertical:
∑

Fy = T1 sin θ1 + T2 sin θ2 − T3 = 0 (39)

Two equations and two unknowns. Let’s solve the first for T1 an plug it in the second:

from 38: T2 = T1
cos θ1
cos θ2

(40)

plug into 39: 0 = T1 sin θ1 +
(
T1

cos θ1
cos θ2

)
sin θ2 − T3 (41)



Solving for T1, since we know T3 already,

T3 = T1 (sin θ1 + cos θ1 tan θ2) (42)

T1 = T3
sin θ1 + cos θ1 tan θ2

≈ 79.06N (43)

Using 40, we can find T2 now:

T2 = T1
cos θ1
cos θ2

= T3
cos θ1

sin θ1 cos θ2 + cos θ1 cos θ2 tan θ2
= T3

cos θ1
sin θ1 cos θ2 + cos θ1 sin θ2

(44)

= T3
tan θ1 cos θ2 + sin θ2

≈ 94.2N (45)

Note T2 and T1 are both less than T3, as they must be.

8. Two blocks of masses m1 and m2 (m1>m2) are placed in contact on a horizontal, frictionless
surface, as shown in the figure below. A constant horizontal force of ~F=115N is applied to m1 as
shown. Find the magnitude of the acceleration of the two blocks.

Solution: The blocks move together, so this is equivalent to a single mass m1 +m2 moving under
the influence of F . The acceleration is thus a=F/(m1 +m2).

9. HRW 6.30 A toy chest and its contents have a combined weight of 180N. The coefficient of static
friction between toy chest and floor is µs =0.42. A child attempts to move the chest across the floor
by pulling on an attached rope. (a) If the rope makes an angle of θ=42◦ with the horizontal, what
is the magnitude of the force ~F that the child must exert on the rope to pull the chest on the verge
of moving? (b) Write an expression for the magnitude F required to pull the chest on the verge of
moving as a function of the angle θ. Determine the value of θ for which F is (c) a minimum and
(d) a maximum magnitude.

Solution: Here’s a quick free-body diagram:
Along the y direction, the net force must be zero for the block to stay on the floor:
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∑
Fy = N + F sin θ −mg = 0 (46)

N = mg − F sin θ (47)

Along the horizontal direction, we want the box to be on the verge of moving, so the point where
acceleration is still zero:

∑
Fx = F cos θ − µsN = F cos θ − µsmg + µsF sin θ = 0 (48)

F = µsmg

cos θ + µs sin θ ≈ 74◦ (49)

The force will be minimum when dF/dθ=0:

d

dθ

(
µsmg

cos θ + µs sin θ

)
= µsmg

[ sin θ − µs cos θ
(cos θ + µ sin θ)2

]
= 0 (50)

The pre-factor and denominator are irrelevant; the equation above will only be zero and the force
at a minimum if sin θ=µs cos θ, or when tan θ=µs. In this case, that implies θ≈22.8◦ for minimum
force.

What about the maximum? That is easier: it takes the most force when you are at 90◦ - you can
apply as much force as you want at that point, and the box will never move sideways . . .

10. HRW 5.57 A block of mass ma = 3.70 kg on a frictionless plane inclined at an angle θ= 30.0◦

is connected by a cord over a massless, frictionless pulley to a second block of mass mb = 2.30 kg
(figure below). What are (a) the magnitude of the acceleration of each block, (b) the direction of
the acceleration of the hanging block, and (c) the tension in the cord?

Solution:
Find: The tension in a cord connecting two blocks and the system’s acceleration, with one block
on a frictionless incline and the second on a flat surface with coefficient of kinetic friction µk.

Given: The mass of both blocks, the coefficient of friction for the block on the flat surface, and
the angle of incline for the ramp.
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Sketch: We need free-body diagrams for each mass. Note the axis definitions for each mass. We
are not sure which way the masses will accelerate yet, but we will assume that the hanging mass
mb will fall, meaning the acceleration is in the +x direction for mass ma according to the sketches
below. If we chose incorrectly, the acceleration will come out negative to let us know.
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Since the rope is presumably taut the entire time of interest, the acceleration is the same for both
blocks. For the same reason, the tension applied to both blocks is the same.

Relevant equations: Newton’s second law and geometry will suffice. Along the y direction for
ma and along the x direction for mb, the forces must sum to zero. Along x direction for ma and y
direction for mb, the forces must give the acceleration for each mass.

∑
Fy = 0 (51)∑
Fx = max (52)

Symbolic solution: First consider mass A. The free body diagram above yields the following,
noting that the acceleration will be purely along the x direction:

∑
Fy = n−mag cos θ = 0 (53)∑
Fx = T −mag sin θ = maa =⇒ a = T

ma
− g sin θ (54)

For mass B, things are simpler, but we should keep in mind that the acceleration is along −y:



∑
Fy = T −mbg = −mba =⇒ T = mb(g − a) (55)∑
Fx = 0 (56)

We have enough to find the acceleration in terms of known quantities now:

a = T

ma
− g sin θ = mb

ma
(g − a)− g sin θ (57)

a

(
1 + mb

ma

)
= g

(
mb

ma
− sin θ

)
(58)

a = g

(
mb −ma sin θ
ma +mb

)
(59)

Given this acceleration, the tension is found readily from T =mb(g − a).

T = mbg −mba = mbg −mbg

(
mb −ma sin θ
ma +mb

)
(60)

= g

[
mamb +m2

b

ma +mb
− m2

b +mamb sin θ
ma +mb

]
= g

[
mamb

ma +mb

]
(1 + sin θ) (61)

Numeric solution: Given ma =3.7 kg, mb =2.3 kg, and θ=30◦, the tension is

T = g

[
mamb

ma +mb

]
(1 + sin θ) ≈ 20.9N (62)

and for either block the acceleration is:

a = g

(
mb −ma sin θ
ma +mb

)
≈ 0.736m/s2 (63)

Since the acceleration is positive, we were correct in our original assumption - mass mb moves
downward, and mass ma to the right.


