University of Alabama Department of Physics and Astronomy

 $\rm PH105$ / LeClair $\mathrm{June}\ 4,\ 2015$

Quiz 4: Force - Solution
1. You are in a plane accelerating down a runway during takeoff, and you are holding a pendulum (say, a shoe hanging from a shoelace). The string of the pendulum:
 □ hangs straight downward □ hangs downward and forward, because the net force on the pendulum must be zero □ hangs downward and forward, because the net force must be nonzero □ hangs downward and backward, because the net force must be zero ■ hangs downward and backward, because the net force must be nonzero
2. Two people pull on opposite ends of a rope, each with force F . The tension in the rope is: (Hinterworld it change if one person were removed and that end of the string tied to a wall?)
F/2 $ F$ $ 2F$
3. The static friction force between a car's tires and the ground can do all of the following except:
□ speed the car up □ slow the car down □ change the car's direction ■ it can do all of the above things
4. When you <i>stand at rest</i> on a floor, you exert a downward normal force on the floor. Does this force cause the earth to accelerate in the downward direction?
 □ Yes, but the earth is very massive, so you don't notice the motion □ Yes, but you accelerate along with the earth, so you don't notice the motion □ No, because the normal force isn't a real force ■ No, because you are also pulling on the earth gravitationally □ No, because there is also friction at your feet.