University of Alabama

Department of Physics and Astronomy

Quiz 2

1. A projectile is launched on level ground with a velocity of $\overrightarrow{\mathbf{v}}_{\mathbf{i}}=3.00 \hat{\imath}+4.00 \hat{\jmath}$ in units of m / s. What is the launch angle θ_{i}, relative to the x (or $\hat{\boldsymbol{\imath}}$) axis?

- 53.1°
- 36.9°
- 45.0°
$\square 69.3^{\circ}$

First, what does this velocity vector actually specify? Our definition of unit vectors means that it specifies a vector which is formed by moving 3 units in the $\hat{\boldsymbol{\imath}}$ (or x) direction, and then 4 units in the $\hat{\boldsymbol{\jmath}}$ (or y) direction: as shown below:

The angle of launch is the angle between $\overrightarrow{\mathbf{v}_{\mathbf{i}}}$ and the x axis. If we call that angle θ :

$$
\tan \theta=\frac{y}{x}=\frac{4}{3} \quad \Rightarrow \quad \theta=\arctan \frac{4}{3}=53.1^{\circ}
$$

2. How far in the x (or $\hat{\boldsymbol{\imath}}$) direction does the projectile in question 1 travel before impact? Recall

$$
h=y_{\max }=\frac{v_{i}^{2} \sin ^{2} \theta_{i}}{2 g} \quad R=x_{f}-x_{i}=\frac{v_{i}^{2} \sin 2 \theta_{i}}{g}
$$

- 0.816 m
- 1.57 m
- 2.45 m

In this case, we can directly use the formula for range given above. We just need to know the magnitude of the initial velocity (the speed), and the initial angle found in question 1.

First, we find v_{i} :

$$
v_{\mathbf{i}}=\left|\overrightarrow{\mathbf{v}_{\mathbf{i}}}\right|=\sqrt{x^{2}+y^{2}}=\sqrt{3^{2}+4^{2}}=5
$$

Now that we know ν_{i} and θ_{i}, we can find the range:

$$
R=x_{f}-x_{i}=\frac{v_{i}^{2} \sin 2 \theta_{i}}{g}=\frac{5^{2} \sin \left(2 \cdot 53.1^{\circ}\right)}{9.8}=2.45 \mathrm{~m}
$$

3. A particle has a trajectory that follows $\overrightarrow{\mathbf{r}}=(3.2 \hat{\boldsymbol{\imath}}+1.5 \hat{\boldsymbol{\jmath}}) \mathrm{t}+\frac{1}{2}(4.9 \hat{\boldsymbol{\imath}}+9.8 \hat{\boldsymbol{\jmath}}) \mathrm{t}^{2}$, where t is in seconds, and \boldsymbol{r} is in meters. What is the velocity in the y (or $\hat{\boldsymbol{\jmath}}$) direction at $\mathrm{t}=17.2 \mathrm{~s}$? Note

$$
\overrightarrow{\mathbf{v}}=\frac{d \overrightarrow{\mathbf{r}}}{d t}=\frac{d x}{d t} \hat{\boldsymbol{\imath}}+\frac{d y}{d t} \hat{\boldsymbol{\jmath}}=v_{x} \hat{\imath}+v_{y} \hat{\boldsymbol{\jmath}}
$$

- $258 \mathrm{~m} / \mathrm{s}$
- $137 \mathrm{~m} / \mathrm{s}$
- $312 \mathrm{~m} / \mathrm{s}$
- $170 \mathrm{~m} / \mathrm{s}$

We know that we can write any position vector $\overrightarrow{\mathbf{r}}$ as $\overrightarrow{\mathbf{r}}=\overrightarrow{\mathbf{x}}+\overrightarrow{\mathbf{y}}=x \hat{\boldsymbol{\imath}}+\mathrm{y} \hat{\boldsymbol{\jmath}}$. Thus, first we can group all of the $\hat{\boldsymbol{\jmath}}$ terms together and find an expression for y :

$$
\overrightarrow{\mathbf{y}}=\mathrm{y} \hat{\boldsymbol{\jmath}}=1.5 \mathrm{t} \hat{\boldsymbol{\jmath}}+\frac{1}{2}\left(9.8 \mathrm{t}^{2}\right) \hat{\boldsymbol{\jmath}}=\left(1.5 \mathrm{t}+4.9 \mathrm{t}^{2}\right) \hat{\boldsymbol{\jmath}} \quad \Rightarrow \quad \mathrm{y}=1.5 \mathrm{t}+4.9 \mathrm{t}^{2}
$$

Given this expression for \boldsymbol{y}, the velocity in the $\hat{\boldsymbol{\jmath}}$ or y direction is just:

$$
\overrightarrow{\mathbf{v}_{\mathbf{y}}}=v_{y} \hat{\boldsymbol{\jmath}}=\frac{\mathrm{d}}{\mathrm{dt}}[\mathrm{y}] \hat{\boldsymbol{\jmath}}=(1.5+9.8 \mathrm{t}) \hat{\boldsymbol{\jmath}} \quad \Rightarrow \quad v_{y}=(1.5+9.8 \mathrm{t})=[1.5+9.8(17.2)]=170
$$

4. How far has the particle in question 3 traveled in the x or $\hat{\boldsymbol{\imath}}$ direction from $\mathrm{t}=0$ to $\mathrm{t}=17.2 \mathrm{sec}$?

- 2250 m
- 780 m

- 1480 m

- 2920 m

What we are really asking here is 'what is the difference in x position from $t=0$ to $t=17.2 \mathrm{sec}$ '? To answer this, we first need the x position as a function of time, which can be found by grouping the $\hat{\boldsymbol{\imath}}$ terms together like we did above:

$$
\overrightarrow{\mathrm{x}}=\mathrm{x} \hat{\boldsymbol{\imath}}=3.2 \mathrm{t} \hat{\boldsymbol{\imath}}+\frac{1}{2}\left(4.9 \mathrm{t}^{2}\right) \hat{\boldsymbol{\imath}}=\left(3.2 \mathrm{t}+2.45 \mathrm{t}^{2}\right) \hat{\boldsymbol{\imath}} \quad \Rightarrow \quad \mathrm{x}=3.2 \mathrm{t}+2.45 \mathrm{t}^{2}
$$

Now we can easily calculate the change in x position between the two time points:

$$
\Delta x=x(17.2)-x(0)=\left[3.2 \cdot(17.2)+2.45 \cdot(17.2)^{2}\right]-\left[3.2 \cdot(0)+2.45 \cdot(0)^{2}\right]=780
$$

