\qquad Date \qquad

PH 105-3 Quiz 4: Newton's Laws

A traffic light weighing 123 N hangs from a cable tied to two other cables fastened to a support, as in the figure below. The upper cables make angles of $\theta_{1}=40^{\circ}$ and $\theta_{2}=50^{\circ}$ with the horizontal.

1. What is the magnitude of \vec{T}_{3} ? Hint: draw the free body diagram for the traffic light and cable 3 alone.
2. 154 N
3. 123 N
4. 60 N
5. 79 N
6. Which is the sum of the forces in the \mathbf{x} direction at the point where all three cables meet?
7. $\bigcirc T_{1} \cos 50^{\circ}-T_{2} \cos 40^{\circ}$
8. $T_{2} \sin 50^{\circ}-T_{1} \sin 40^{\circ}$
9. $T_{2} \cos 50^{\circ}-T_{1} \cos 40^{\circ}$
10. $\bigcirc T_{1} \sin 40^{\circ}+T_{2} \sin 50^{\circ}$
11. Which is the sum of the forces in the \mathbf{y} direction at the point where all three cables meet?
12. $\bigcirc T_{1} \cos 50^{\circ}-T_{2} \cos 40^{\circ}-123 \mathrm{~N}$
13. $\bigcirc T_{2} \sin 50^{\circ}-T_{1} \sin 40^{\circ}-123 \mathrm{~N}$
14. $T_{2} \cos 50^{\circ}-T_{1} \cos 40^{\circ}+123 \mathrm{~N}$
15. $\bigcirc T_{1} \sin 40^{\circ}+T_{2} \sin 50^{\circ}-123 \mathrm{~N}$

Two blocks of masses m_{1} and $m_{2}\left(m_{1}>m_{2}\right)$ are placed in contact on a horizontal, frictionless surface, as shown in the figure below. A constant horizontal force of $\vec{F}=115 \mathrm{~N}$ is applied to m_{1} as shown.

4. If $m_{1}=15 \mathrm{~kg}$ and $m_{2}=10 \mathrm{~kg}$, find the magnitude of the acceleration of the system of two blocks.

1. $113 \mathrm{~m} / \mathrm{s}^{2}$
2.$4.6 \mathrm{~m} / \mathrm{s}^{2}$
2. $9.2 \mathrm{~m} / \mathrm{s}^{2}$
4.$1.5 \mathrm{~m} / \mathrm{s}^{2}$
3. Newton's third law dictates that $P_{12}=P_{21}$. What is the magnitude of P_{12} ?
1.$69 N$
2.$113 N$
3.$92 N$
4.46 N
