UNIVERSITY OF ALABAMA Department of Physics and Astronomy

PH 105 / LeClair

Summer 2012

PH 105 Quiz 4: Newton's Laws

A traffic light weighing 123 N hangs from a cable tied to two other cables fastened to a support, as in the figure below. The upper cables make angles of $\theta_1 = 40^\circ$ and $\theta_2 = 50^\circ$ with the horizontal.

- 1. What is the magnitude of $\vec{\mathbf{T}}_3$? Hint: draw the free body diagram for the traffic light and cable 3 alone.
 - □ 154 N
 - 123 N
 - □ 60 N
 - □ 79 N

The cable T_3 has to support the traffic light's entire weight.

- 2. Which is the sum of the forces in the **x direction** at the point where all three cables meet?
 - $\Box T_1 \cos 50^\circ T_2 \cos 40^\circ$
 - $\Box \ \mathsf{T}_2 \sin 50^\circ \mathsf{T}_1 \sin 40^\circ$
 - $T_2 \cos 50^\circ T_1 \cos 40^\circ$
 - $\Box \ \mathsf{T}_1 \sin 40^\circ + \mathsf{T}_2 \sin 50^\circ$
- 3. Which is the sum of the forces in the **y** direction at the point where all three cables meet?
 - $\Box T_1 \cos 50^\circ T_2 \cos 40^\circ 123 N$
 - $\Box T_2 \sin 50^{\circ} T_1 \sin 40^{\circ} 123 N$
 - $\Box T_2 \cos 50^{\circ} T_1 \cos 40^{\circ} + 123 N$
 - $T_1 \sin 40^\circ + T_2 \sin 50^\circ 123N$

Name & ID

Two blocks of masses \mathfrak{m}_1 and \mathfrak{m}_2 ($\mathfrak{m}_1 > \mathfrak{m}_2$) are placed in contact on a horizontal, frictionless surface, as shown in the figure below. A constant horizontal force of $\vec{\mathbf{F}} = 115$ N is applied to \mathfrak{m}_1 as shown.

4. If $m_1 = 15$ kg and $m_2 = 10$ kg, find the magnitude of the acceleration of the system of two blocks.

- \square 113m/s²
- 4.6m/s²
- \square 9.2m/s²
- \square 1.5m/s²

The blocks move together, so this is equivalent to a single mass $m_1 + m_2$ moving under the influence of F. The acceleration is thus $a = F/(m_1 + m_2) \approx 4.6 \text{ m/s}^2$.

5. Newton's third law dictates that $P_{12} = P_{21}$. What is the magnitude of P_{12} ?

- □ 69N
- □ 113N
- □ 92N
- 46N

The only horizontal force acting on block 2 is P_{12} , and this force must then be equal to mass times acceleration for block 2: $\sum F_x = P_{12} = m_2 a$. Given the acceleration from the previous part, this reduces to $P_{12} = \frac{m_1}{m_1 + m_2} F \approx 46 \text{ N}$.