University of Alabama
 Department of Physics and Astronomy

PH 105 LeClair
Summer 2012

Quiz 4: momentum and such

1. A rubber ball strikes a brick wall with a velocity (just before the collision) of $\overrightarrow{\mathbf{v}}_{i}=3.0 \hat{\imath}+4.0 \hat{\jmath} \mathrm{~m} / \mathrm{s}$. It rebounds with a velocity of $\overrightarrow{\mathbf{v}}_{\mathrm{f}}=-3.0 \hat{\imath}+4.0 \hat{\jmath} \mathrm{~m} / \mathrm{s}$, i.e., the collision was perfectly elastic. What can be said about the change in momentum of the rubber ball?
\square The momentum $\overrightarrow{\mathbf{p}}$ did not change, since the collision was elastic.

- The momentum $\overrightarrow{\mathbf{p}}$ changed direction, its magnitude is the same.
\square The momentum $\overrightarrow{\mathbf{p}}$ decreased.
- The momentum $\overrightarrow{\mathbf{p}}$ increased.
- The question cannot be answered, we do not know the mass of the ball.

Solution: The magnitude of the momentum $|\overrightarrow{\mathbf{p}}|=\mathfrak{m}|\overrightarrow{\mathbf{v}}|$ is the same in either case, but its direction has changed. Both before and after the collision, $|\overrightarrow{\mathbf{v}}|=3^{2}+4^{2}=5^{2}$, so independent of the mass, $|\overrightarrow{\mathbf{p}}|$ is constant.
2. Which of the following is in error?
$\square \overrightarrow{\mathbf{F}}=\frac{\mathrm{d} \overrightarrow{\mathrm{p}}}{\mathrm{dt}}$
$\square \mathrm{K}=\frac{\mathrm{p}^{2}}{2 \mathrm{~m}}$

- $\overrightarrow{\mathbf{p}}=\mathfrak{m} \frac{\mathrm{d} \overrightarrow{\mathrm{x}}}{\mathrm{dt}}$
- $\Delta \overrightarrow{\mathbf{p}}=\int \overrightarrow{\mathbf{F}} \cdot \mathrm{d} \overrightarrow{\mathbf{r}}$

Solution: With $\mathfrak{p}=\mathfrak{m v}$ and constant mass \mathfrak{m}, all are true but the last option, it should be $\Delta \overrightarrow{\mathbf{p}}=\int \overrightarrow{\mathbf{F}} \mathrm{dt}$.
3. A 60 kg person standing on a frictionless surface fires a 0.5 kg arrow horizontally at $50 \mathrm{~m} / \mathrm{s}$. With what velocity does the archer move backwards across the ice after firing the arrow?

- $v_{\text {archer }}=+0.42 \mathrm{~m} / \mathrm{s}$

■ $v_{\text {archer }}=-0.42 \mathrm{~m} / \mathrm{s}$

- $v_{\text {archer }}=-0.84 \mathrm{~m} / \mathrm{s}$
- $v_{\text {archer }}=+0.84 \mathrm{~m} / \mathrm{s}$

Solution: Conservation of momentum: initially there is zero momentum, so afterwards we must have $m_{\text {archer }} v_{\text {archer }}+m_{\text {arrow }} v_{\text {arrow }}=0$. The archer's velocity must be negative, ruling out two answers right off the bat. Solving for $v_{\text {archer }}$ and plugging in the numbers, $v_{\text {archer }}=+0.42 \mathrm{~m} / \mathrm{s}$.
4. A ball of mass m is dropped from rest at a height h. What is the magnitude of the ball's momentum just before impact?

- 2 mgh
- $m \sqrt{g h}$
- $\mathrm{m} \sqrt{2 \mathrm{gh}}$
- $\sqrt{2 \mathrm{mgh}}$

Solution: The ball starts at height h above the ground, with potential energy $\mathrm{U}_{\mathrm{i}}=\mathrm{mgh}$. It reaches the ground with zero potential energy, and thus kinetic energy $K_{f}=\frac{1}{2} m v^{2}=U_{i}=m g h$. This gives the velocity as the ball strikes the ground as $v=\sqrt{2 g h}$, so the momentum is $p=m v=m \sqrt{2 g h}$.

