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•  During rotational motion, all the particles in an object follow 
circular paths around the axis of rotation. 

•  The rotational velocity ωθ of an object is the rate at which the 
object’s rotational coordinate θ changes. 

© 2015 Pearson Education, Inc. 

Chapter 11 Preview 
Looking Ahead: Rotational kinematics 
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•  The rotational acceleration αθ is the rate at which an object’s 
rotational velocity changes. 

•  You will learn how to represent rotational kinematics using 
diagrams and mathematics. 

© 2015 Pearson Education, Inc. 

Chapter 11 Preview 
Looking Ahead: Rotational kinematics 
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•  The velocity    of an object moving along a circle is always 
perpendicular to the object’s position vector    measured from 
the axis of rotation. 

•  The tangential component vt of the velocity is tangent to the 
circle. The radial component vr of the velocity is zero. 

© 2015 Pearson Education, Inc. 

Chapter 11 Preview 
Looking Ahead: Translational variables for rotating objects 
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•  An object moving in a circle has a nonzero acceleration (even if its 
speed is constant) because the direction of the velocity changes. 

•  An inward force is required to make an object move in a circle, 
even at constant speed. 

•  You will learn how to represent the translational variables for 
uniform and non-uniform circular motion diagrammatically. 

© 2015 Pearson Education, Inc. 

Chapter 11 Preview 
Looking Ahead: Translational variables for rotating objects 
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•  If the tangential acceleration at of a rotating object is constant, its 
rotational acceleration αθ is also constant. In only that case, the 
rotational kinematics relationships for constant rotational 
acceleration apply. 

•  You will learn how to derive and apply the equations for constant 
rotational acceleration. 

© 2015 Pearson Education, Inc. 

Chapter 11 Preview 
Looking Ahead: Constant rotational acceleration 
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Chapter 11 Preview 
Looking Ahead: Rotational inertia 

•  Rotational inertia is a measure 
of an object’s tendency to resist 
any change in its rotational 
velocity.  

•  The rotational inertia depends on 
the inertia of the object and on 
how that inertia is distributed.  

•  The SI units of rotational inertia 
are kilograms-meters-squared  
(kg - m2). 

•  You will learn how to compute 
rotational inertia for single 
particles, collections of particles, 
and extended objects. 
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Chapter 11 Preview 
Looking Ahead: Rotational kinetic energy and angular momentum 

•  Rotational kinetic 
energy is the kinetic 
energy of an object due 
to its rotational motion. 

•  Angular momentum 
Lθ is the capacity of an 
object to make other 
objects rotate. 

•  A particle can have 
angular momentum 
even if it is not rotating. 
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Chapter 11 Preview 
Looking Ahead: Rotational kinetic energy and angular momentum 

•  The law of conservation of 
angular momentum says that 
angular momentum can be 
transferred from one object to 
another but cannot be created or 
destroyed. The angular 
momentum of an object or system 
is constant when no tangential 
forces are exerted on it. 

•  You will learn how to compute 
rotational kinetic energy, angular 
momentum, and apply the 
conservation law for angular 
momentum for various situations. 
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Concepts 

© 2015 Pearson Education, Inc. 

Chapter 11: Motion in a Circle 
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Chapter 11: Motion in a Circle 

•  The motion we have been dealing 
with so far is called translational 
motion (figure part a). 

•  In this chapter we will start 
exploring rotational motion.  

•  In rotational motion (figure parts 
b and c), the orientation of the 
object changes, and the particles 
in the object follow different 
circular paths centered on the axis 
of rotation.  
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Section 11.1: Circular motion at constant speed 

•  Goal: kinematics of 
circular motion 

•  The figure shows two 
examples of circular 
motion.  

•  The block and the 
puck revolve around 
the vertical axis 
through the center of 
each circular path.  
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•  The figure shows an overhead view of the puck moving along 
the arc of a circle.  

•  The instantaneous velocity    of an object in circular    motion 
is always perpendicular to the object’s position measured from 
the center of the circular trajectory.   

•  In the first part of this chapter, we study only objects in 
circular motion at constant speed. 

© 2015 Pearson Education, Inc. 

Section 11.1: Circular motion at constant speed 
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Section 11.1: Circular motion at constant speed 

•  The position of an object in 
circular motion can be given in 
polar coordinates (r, θ ). 

•  The magnitude of the position 
vector of an object in circular 
motion is the radius.  

•  To specify the direction of 
motion, we define the object’s 
rotational coordinate (𝜗 ), as 
illustrated in part a of the 
figure.  

•  As shown in part b, the 
direction of increase of 𝜗 is 
denoted by a curved arrow 
around the axis of rotation.  
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•  The rate at which an object’s rotational coordinate (𝜗) 
changes is referred to as rotational velocity and is 
represented by ω𝜗 = d𝜗/dt.  

•  ω𝜗 is the 𝜗 component of the rotational velocity vector  
•  Units of rotational velocity and rotational speed are s–1. 

•  an analogous unit: rpm 

•  The magnitude of rotational velocity is the rotational 
speed, which is denoted by  

•  The time it takes for one revolution is called the 
period (T). 

© 2015 Pearson Education, Inc. 

Section 11.1: Circular motion at constant speed 
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•  The relationship between an object’s speed and angular velocity 
is illustrated in the figure below. 

•  All points on the rotating disc will have the same rotational 
velocity. 

•  However, the speed depends on the radius of the circle: The 
further the point on the disc from the rotation axis, the larger the 
speed. 

© 2015 Pearson Education, Inc. 

Section 11.1: Circular motion at constant speed 
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Section 11.1: Circular motion at constant speed 

•  As shown in the figure, even 
though the initial and final speeds 
of the object in circular motion are 
the same, the object undergoes a 
change in velocity 

•  This means the object is 
accelerating, even if the speed is 
constant.  

•  Using the vector subtraction 
method described in section, we 
can determine that                     
points toward the center of the 
circle. 

  Δ

υ.

  Δ

υ =
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Section 11.1: Circular motion at constant speed 

•  This means the average 
accelerating                         also 
points toward the center.  

•  An object executing circular 
motion at constant speed has 
an acceleration of constant 
magnitude that is directed 
toward the center of its 
circular path.  

•  This acceleration is called the 
centripetal acceleration. 

   
aav ≡ Δ


υ / Δ(t)
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Exercise 11.2 Accelerations 

© 2015 Pearson Education, Inc. 

Section 11.1: Circular motion at constant speed 

Determine the direction of the average acceleration in 
each of the following situations:  
(a) A car goes over the top of a hill at constant speed.  
(b) A runner slows down after crossing a finish line on 

level ground.  
(c) A cyclist makes a left turn while coasting at constant 

speed on a horizontal road.  
(d) A roller-coaster car is pulled up a straight incline at 

constant speed. 
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Exercise 11.2 Accelerations (cont.) 

© 2015 Pearson Education, Inc. 

Section 11.1: Circular motion at constant speed 

SOLUTION For each situation I make a before-and-after sketch 
showing the initial and final velocities (Figure 11.9). The 
acceleration is nonzero if the direction of the velocity or the 
magnitude of the velocity changes. 
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Exercise 11.2 Accelerations (cont.) 

© 2015 Pearson Education, Inc. 

Section 11.1: Circular motion at constant speed 

SOLUTION The average acceleration points in the same 
direction as the change in velocity       To determine the direction 
of this vector, I draw the vectors     and     with their tails 
together. The change in velocity then points from the tip of     to 
the tip of     , as shown in Figure 11.10. For each situation, the 
direction of the average acceleration is given by the direction  
of        ✔ 
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•  As illustrated in the figure, we use a rotational 
coordinate system to analyze circular motion  

(cylindrical coordinates) 

© 2015 Pearson Education, Inc. 

Section 11.1: Circular motion at constant speed 
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 Suppose an object is in accelerated circular motion, so 
that                In which direction does the object’s average 
acceleration point? 
 
if the speed is increasing, there must be a component of 
acceleration along the path direction too 
 
adding this to the perpendicular acceleration due to circular 
motion, the net acceleration must now be more toward the 
direction of motion 

© 2015 Pearson Education, Inc. 

Checkpoint 11.1 

11.1 
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Is it possible for an object to have a nonzero 
acceleration if the object is traveling (a) at constant 
velocity and (b) at constant speed? 
 
1.  Yes, yes 
2.  Yes, no 
3.  No, yes 
4.  No, no 

© 2015 Pearson Education, Inc. 

Section 11.1 
Question 1 
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Is it possible for an object to have a nonzero 
acceleration if the object is traveling (a) at constant 
velocity and (b) at constant speed? 
 
1.  Yes, yes 
2.  Yes, no 
3.  No, yes  
4.  No, no 

© 2015 Pearson Education, Inc. 

Section 11.1 
Question 1 
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For an object in circular motion at constant speed, the 
directions of the object’s position vector (relative to 
the center of the circular trajectory), velocity vector, 
and acceleration vector at a given instant are 
 
1.  all radially inward. 
2.  all radially outward. 
3.  all tangential. 
4.  radially outward, tangential, and radially inward 

respectively. 
5.  none of the above. 

© 2015 Pearson Education, Inc. 

Section 11.1 
Question 2 
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For an object in circular motion at constant speed, the 
directions of the object’s position vector (relative to 
the center of the circular trajectory), velocity vector, 
and acceleration vector at a given instant are 
 
1.  all radially inward. 
2.  all radially outward. 
3.  all tangential. 
4.  radially outward, tangential, and radially inward 

respectively. 
5.  none of the above. 

© 2015 Pearson Education, Inc. 

Section 11.1 
Question 2 
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Section 11.2: Forces and circular motion 

Section Goals 
You will learn to 
•  Analyze the circular motion of particles 

using Newton’s laws. 
•  Represent the relationship between force 

and circular motion on force diagrams 
and motion diagrams.  
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•  As we saw, the centripetal acceleration of an object in 
circular motion at constant speed points toward the 
center of the circle. Then from Newton’s second law:  
•  An object that executes circular motion at 

constant speed is subject to a force (or vector 
sum of forces) of constant magnitude directed 
toward the center of the circular trajectory.  

© 2015 Pearson Education, Inc. 

Section 11.2: Forces and circular motion 
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•  Suppose you round a curve in a car as shown below. The car exerts a 
force on you that points toward the center.  

•  However, you feel as if you are being pushed outward. Why? 
•  This feeling of being pushed outward rises only from the noninertial 

nature of the car’s reference frame.  
•  Avoid analyzing forces from a rotating frame of reference 

because such a frame is accelerating and therefore noninertial. 

© 2015 Pearson Education, Inc. 

Section 11.2: Forces and circular motion 
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•  To see how the inward force depends on radius, look at the two figures 
below.  

 
 
 
 
 
 
 
 
•  We can conclude that 

•  The inward force required to make an object move in a circular 
motion increases with increasing speed and decreases with 
increasing radius.  

© 2015 Pearson Education, Inc. 

Section 11.2: Forces and circular motion 
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Example 11.3 Cube on a turntable 

© 2015 Pearson Education, Inc. 

Section 11.2: Forces and circular motion 

A cube lies on a turntable initially rotating at constant 
speed. The rotational speed of the turntable is slowly 
increased, and at some instant the cube slides off the 
turntable. Explain why this happens. 
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Example 11.3 Cube on a turntable (cont.) 

© 2015 Pearson Education, Inc. 

Section 11.2: Forces and circular motion 

❶ GETTING STARTED I’m not given much information, so I 
begin by making a sketch of the situation (Figure 11.15a). As the 
turntable rotates, the cube executes a circular motion. My task is 
to explain why the cube does not remain on the turntable as the 
turntable rotates faster. 
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Example 11.3 Cube on a turntable (cont.) 

© 2015 Pearson Education, Inc. 

Section 11.2: Forces and circular motion 

❷ DEVISE PLAN Because the cube executes circular 
motion, it has a centripetal acceleration, and so the 
vector sum of the forces exerted on it must point 
toward the center of the turntable. I therefore need to 
make a free-body diagram that reflects this combination 
of forces and determine how the forces change as the 
rotational speed of the turntable increases. 
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Example 11.3 Cube on a turntable (cont.) 

© 2015 Pearson Education, Inc. 

Section 11.2: Forces and circular motion 

❸ EXECUTE PLAN To draw my free-body diagram, I 
must answer the question What are the forces exerted on 
the cube? First there is        the gravitational force 
exerted by Earth. This force is directed vertically 
downward and so cannot contribute to a force directed 
toward the turntable’s center. 

   

FEc

G ,
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Example 11.3 Cube on a turntable (cont.) 

© 2015 Pearson Education, Inc. 

Section 11.2: Forces and circular motion 

❸ EXECUTE PLAN The only other force exerted on 
the cube is       the contact force exerted by the surface 
of the turntable.  
The normal component      of this force must be equal in 
magnitude to       because the cube does not accelerate 
in the vertical direction.  
The horizontal component, which is the force of static 
friction       is what forces the cube toward the center of 
its circular path. 

   

Fsc
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Example 11.3 Cube on a turntable (cont.) 

© 2015 Pearson Education, Inc. 

Section 11.2: Forces and circular motion 

❸ EXECUTE PLAN I therefore draw the free-body diagram 
shown in Figure 11.15b. Because the vertical component of the 
acceleration is zero, the forces in that direction add to zero. Thus 
the vector sum of the forces exerted on the cube equals the force 
of static friction. 
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Example 11.3 Cube on a turntable (cont.) 

© 2015 Pearson Education, Inc. 

Section 11.2: Forces and circular motion 

❸ EXECUTE PLAN As the rotational speed increases, 
the magnitude of the centripetal acceleration of the cube 
also increases. This means that the magnitude of the 
force of static friction must get larger. At some instant, 
this force reaches its maximum value and so can no 
longer increase even though the rotational speed 
continues to increase. 
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Example 11.3 Cube on a turntable (cont.) 

© 2015 Pearson Education, Inc. 

Section 11.2: Forces and circular motion 

❸ EXECUTE PLAN Consequently, the vector sum of 
the forces exerted on the cube is no longer large enough 
to give it the centripetal acceleration required for its 
circular trajectory. When this happens, the distance 
between the cube and the axis of rotation increases until 
the cube slides off the edge. ✔ 
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Example 11.3 Cube on a turntable (cont.) 

© 2015 Pearson Education, Inc. 

Section 11.2: Forces and circular motion 

❹ EVALUATE RESULT What makes the cube slide 
off the turntable is its tendency to continue in a straight 
line (that is, on a trajectory tangent to its circular 
trajectory). Up to a certain speed the force of static 
friction is large enough to overcome this tendency and 
keep the cube moving in a circle. Once the force of 
static friction reaches its maximum value, the cube 
begins to slide. 
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Constraints & Newton’s second law 

© 2015 Pearson Education, Inc. 

Forces and circular motion 

•  One half of Newton’ second law: add up forces 
•  Other half: what is the constraint on the system? 

•  now we know a new one: constraining path 
constrains force sum!  

•  must be a function of v and R …need to know more! 

•  centripetal force is the constraint on a force 
balance, it is not drawn in the free body diagram 
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 Suppose I have two cubes on a turntable at equal 
distances from the axis of rotation. The inertia of cube 1 is twice 
that of cube 2. Do both cubes begin sliding at the same instant if I 
slowly increase the rotational velocity? 
 
 
 
force required to keep cube 1 in motion is twice as large, but it 
experiences a friction force twice as large. 
 
everything scales with mass in the same way 

© 2015 Pearson Education, Inc. 

Checkpoint 11.2 

11.2 
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•  The figure shows free-body diagrams for three objects moving in 
circular motion at constant speed.  

•  In each case the vector sum of the forces exerted on the object points 
toward the center of the trajectory. Don’t draw in centripetal force! 

© 2015 Pearson Education, Inc. 

Section 11.2: Forces and circular motion 
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 (a) Does a bicycle always have to lean into a curve as 
illustrated in Figure 11.17a? (b) The rope holding the bucket in 
Figure 11.17b makes a small angle with the horizontal. Is it 
possible to swing the bucket around so that the rope is exactly 
horizontal? 

© 2015 Pearson Education, Inc. 

Checkpoint 11.3 

11.3 

(a)  yes – this is the only way 
there is a horizontal 
component of the contact 
force to maintain a 
circular path 

(b)  no – the vertical 
component of the string 
force keeps the bucket 
from falling! 
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Section 11.3: Rotational inertia 

Section Goals 

You will learn to 
•  Define rotational inertia as a 

generalization of the concept 
of inertia. 

•  Identify the factors that 
determine the rotational 
inertia for particles and 
extended objects. 
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•  Consider the two experiment illustrated in the figure:  
•  Pucks A, B and C are identical. Puck A traveling at speed υ hits 

the stationary Pucks B and C in the two experiments.  
•  B and C are fastened to two strings and are free to rotate. 

•  We can conclude that the rotational speed of puck B is larger 
than the rotational speed of puck C.  

•  It seems that puck C, having a trajectory with a larger radii 
than B, resists a change in its rotational velocity more than B. 

© 2015 Pearson Education, Inc. 

Section 11.3: Rotational inertia 
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Section 11.3: Rotational inertia 

•  An object’s tendency to resist a 
change in rotational velocity is 
called its rotational inertia.  
•  Consider the figure: It is 

easier to rotate a hammer if 
the axis of rotation is closer to 
the center of mass.  

•  We can conclude that the 
rotational inertia is not given 
simply by the object’s inertia 
(m). It also depends on the 
location of the axis of 
rotation. 
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 About which axis is the rotational inertia of a pencil (a) 
largest and (b) smallest:  
(1)  a lengthwise axis through the core of the pencil;  
(2)  an axis perpendicular to the pencil’s length and passing 

through its midpoint;  
(3)  an axis perpendicular to the pencil’s length and passing 

through its tip? 

largest when most mass is farthest from center = 3 
smallest when concentrated at center = 1 

© 2015 Pearson Education, Inc. 

Checkpoint 11.4 

11.4 



Slide 11-49 

Is rotational inertia an intrinsic property of an object? 
 
1.  Yes 
2.  No 

© 2015 Pearson Education, Inc. 

Section 11.3 
Question 4 
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Is rotational inertia an intrinsic property of an object? 
 
1.  Yes 
2.  No – depends on axis of rotation 

© 2015 Pearson Education, Inc. 

Section 11.3 
Question 4 
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Which of the following is in translational equilibrium? 

(a) An object whose center of mass is undergoing circular 
motion at constant speed. 

(b) A wheel spinning about an axis through its center of 
mass. 

© 2015 Pearson Education, Inc. 

Chapter 11: Self-Quiz #1 
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Answer 

(a) An object undergoing circular motion at constant 
speed is accelerated because the direction of its center-
of mass velocity changes continuously. If it is 
accelerated, the vector sum of the forces exerted on the 
object is not zero, and the object cannot be in 
translational equilibrium. 

(b) If the center of mass of a spinning wheel is fixed, 
acm = 0 and so the object is in translational equilibrium. 

© 2015 Pearson Education, Inc. 

Chapter 11: Self-Quiz #1 
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Describe the interaction responsible for providing a 
centripetal acceleration for  
(a) a car rounding a level curve.  
(b) a car rounding a banked curve. 
(c) a coin rotating along with a turntable. 
(d) a ball swung through a horizontal circle by a string 

that sweeps out a cone.  
(e) the Moon orbiting Earth. 
(f) clothes spinning in a dryer.  
(g) a marble rolling along the inside of a horizontal hoop. 
(h) a ball on a string rolling in a horizontal circle. 

© 2015 Pearson Education, Inc. 

Chapter 11: Self-Quiz #4 
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Answer 
(a) Force of static friction exerted by road on car  
(b) Horizontal component of contact force exerted by road on car 
(c) Force of static friction exerted by turntable on coin  
(d) Horizontal component of tensile force exerted by string on ball  
(e) Gravitational force exerted by Earth on the Moon  
(f) Centripetal component of contact force exerted by drum of 

dryer on clothes, 
(g) Contact force exerted by hoop on marble 
(h) Tensile force exerted by string on ball 

© 2015 Pearson Education, Inc. 

Chapter 11: Self-Quiz #4 
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A ball attached to a string (the far end of which is fixed) 
rolls in a horizontal circle. Under which conditions is 
the string more likely to break? 
 
(a) When the speed of the ball is increased for a given 

radius  
(b) When the length of the string is increased for a given 

speed 

© 2015 Pearson Education, Inc. 

Chapter 11: Self-Quiz #5 
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Answer 

In case a, for a given radius, a greater speed means the 
ball travels through a larger angle during a specific time 
interval. If the angle is larger, the magnitude of     is 
larger. A larger magnitude of     requires that the 
acceleration and force also be larger.  
 
The force providing the acceleration is due to the 
tension in the string. Therefore, the greater speed 
requires more tension and the string is more likely to 
break. 

© 2015 Pearson Education, Inc. 

Chapter 11: Self-Quiz #5 
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Answer 

In case b, for a given speed, a larger radius means that 
the ball travels through a smaller angle in a specific 
time interval. If the angle is smaller, the magnitude of 
is smaller. A smaller     requires a smaller acceleration 
and a smaller force.  
 
Therefore, a large radius requires a smaller tension in 
the string and the string is less likely to break. 

© 2015 Pearson Education, Inc. 

Chapter 11: Self-Quiz #5 
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Q1 

A girl and a boy are riding on a merry-go-round that is 
turning at a constant rate. The girl is near the outer edge, 
and the boy is closer to the center. Who has greater 
angular displacement? 

•  Both the girl and the boy have the same nonzero angular 
displacement.   

•  The girl has greater angular displacement.  
•  The boy has greater angular displacement.   
•  Both the girl and the boy have zero angular displacement.

  
© 2015 Pearson Education, Inc. 

Reading quiz 
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Q1 

A girl and a boy are riding on a merry-go-round that is 
turning at a constant rate. The girl is near the outer edge, 
and the boy is closer to the center. Who has greater 
angular displacement? 

•  Both the girl and the boy have the same nonzero angular 
displacement.   

•  The girl has greater angular displacement.  
•  The boy has greater angular displacement.   
•  Both the girl and the boy have zero angular displacement.

  
© 2015 Pearson Education, Inc. 

Reading quiz 
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Q2 

A girl and a boy are riding on a merry-go-round that is 
turning at a constant rate. The girl is near the outer edge, 
and the boy is closer to the center. Who has greater 
tangential acceleration? 

•  Both the girl and the boy have zero tangential acceleration.
  

•  The boy has greater tangential acceleration.   
•  The girl has greater tangential acceleration.   
•  Both the girl and the boy have the same nonzero tangential 

acceleration.   
© 2015 Pearson Education, Inc. 

Reading quiz 
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Q2 

A girl and a boy are riding on a merry-go-round that is 
turning at a constant rate. The girl is near the outer edge, 
and the boy is closer to the center. Who has greater 
tangential acceleration? 

•  Both the girl and the boy have zero tangential acceleration. 
•  The boy has greater tangential acceleration.   
•  The girl has greater tangential acceleration.   
•  Both the girl and the boy have the same nonzero tangential 

acceleration.   

© 2015 Pearson Education, Inc. 

Reading quiz 



Slide 11-62 

Quantitative Tools 

© 2015 Pearson Education, Inc. 

Chapter 11: Motion in a Circle 
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Section 11.4: Rotational kinematics 

Section Goals 
You will learn to 
•  Generalize the concepts of 

translational displacement, 
velocity, and acceleration to 
rotation. 

•  Derive the relationships between 
the equations of translational 
kinematics and rotational 
kinematics. 

•  Visualize the tangential and radial 
geometry of the rotational 
kinematic quantities. 
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Section 11.4: Motion in a Circle 

•  The rotational coordinate (𝜗) is defined as 

 
The sign and magnitude of s (and 𝜗) 
depend on the choice of rotational 
coordinate system 

•  𝜗 is unitless. In contrast, the polar angle θ 
can be expressed in radians, degrees, or 
revolutions, where  

2π rad = 360o = 1 rev 
•  Given θ we can obtain 𝜗 from: 𝜗 = θ/(1 rad). 
•  The change in the rotational coordinate Δ𝜗 is 

given by 

 
ϑ ≡ s

r

  
Δϑ =ϑf −ϑ i =

sf

r
−

si

r
= Δs

r yes, this is a bit pedantic 
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Checkpoint 11.5 

 Starting from a position with rotational coordinate zero, 
an object moves in the positive θ direction at a constant speed of 
3.0 m/s along the perimeter of a circle of radius 2.0 m.  
 
(a)  What is the object’s rotational coordinate after 1.5 s?  
(b) How long does it take the object to complete one revolution 

11.5 
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Checkpoint 11.5 

 Starting from a position with rotational coordinate zero, 
an object moves in the positive θ direction at a constant speed of 
3.0 m/s along the perimeter of a circle of radius 2.0 m.  
 
(a)  What is the object’s rotational coordinate after 1.5 s?  

in 1.5s, covers an arclength of s = (3m/s)(1.5s) = 4.5m 
𝜗 = sr = (4.5m)/(2.0m) = 2.3 

(b) How long does it take the object to complete one revolution 
perimeter is C = 2π(2.0m), at 3m/s this takes  
t = C/v = 2π(2.0m)/(3.0m/s) = 4.2s 

 

11.5 
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Section 11.4: Motion in a Circle 

•  The rotational velocity is defined as: 

•  The rotational speed is ω = |ω𝜗|. 
•  From equations 11.4 and 11.6 we get, 

or                    υt = rω𝜗 

•  The tangential component of velocity 
(υt) and ω𝜗 are signed quantities that 
are positive in the direction of 
increasing 𝜗. 

•  We can express the previous equation in 
terms of speed: 

υ = rω 

  
ωϑ ≡ lim

Δt→0

Δϑ
Δt

= dϑ
dt

 
ωϑ =

υt

r
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Section 11.4: Motion in a Circle 

•  The rotational acceleration is 
defined as 

•  By analyzing the two similar 
triangles shown in the figure, we can 
show that the magnitude of the 
centripetal acceleration to be 

•  Using the definition of the radial axis 
(see bottom figure), we can write 

  
αϑ ≡ lim

Δt→0

Δωϑ

Δt
=

dωϑ

dt
= d 2ϑ

dt2

  
ac =

υ 2

r
(circular motion)

  
ar = −υ

2

r
(any motion along arc of radius r)
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Constraints & Newton’s second law, again 

•  Our constraint is now more specific: 

(not just circles either: replace r with generalized radius 
of curvature at a point on a curve. Cal III …) 

© 2015 Pearson Education, Inc. 

Forces and circular motion 
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•  For any type of circular motion: υr = 0 and ar = –υ2/r.  
•  When the object’s speed is not constant, there is a tangential 

acceleration component given by 

•  Or, using α𝜗 = dω𝜗/dt 
 at = rα𝜗 

•  So, if the object in circular motion 
speeds up or slows down, the magnitude 
of acceleration is 

© 2015 Pearson Education, Inc. 

Section 11.4: Motion in a Circle 

 
at =

dυt

dt
= r

dωϑ

dt

  a = ar
2 + at

2
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•  The relationship between rotational and translational motion 
quantities can be given as 
translational motion quantity =(r)(rotational motion quantity) 

 
 
 
 
 

•  Using the kinematic equations developed in Chapter 3, we can 
obtain the equivalent kinematic equations for rotational motion 
with constant rotational acceleration (αt): 

© 2015 Pearson Education, Inc. 

Section 11.4: Motion in a Circle 

  

ϑf =ϑ i +ωϑ ,iΔt + 1
2αϑ (Δt)2 (constant rotational acceleration)

ωϑ ,f =ωϑ ,i +αϑΔt (constant rotational acceleration)
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•  Think about this for a minute. 

 

•  You already know all the equations & techniques for 
rotational kinematics 

•  You already learned it for 1D motion 
•  Only the letters have changed. Same equations, same 

solutions. Just multiply/divide by r. 
© 2015 Pearson Education, Inc. 

Rotational vs translational motion 



Slide 11-73 

•  Works pretty much across the board 

© 2015 Pearson Education, Inc. 

Section 11.4: Motion in a Circle 
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Section 11.4: Rotational kinematics 

Example 11.4 Leaning into a curve 

A women is rollerblading to work 
and, running late, rounds a corner 
at full speed, sharply leaning into 
the curve (Figure 11.25). If, 
during the turn, she goes along 
the arc of a circle of radius 4.5 m 
at a constant speed of 5.0 m/s, 
what angle θ must her body make 
with the vertical in order to round 
the curve without falling? 
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Section 11.4: Rotational kinematics 

Example 11.4 Leaning into a curve (cont.) 

❶ GETTING STARTED As she 
rounds the circular arc at constant 
speed, the woman executes circular 
motion at constant speed.  
 
She must therefore undergo a 
centripetal acceleration as a result of 
the forces exerted on her. Draw a free-
body diagram (Figure 11.26). 
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Section 11.4: Rotational kinematics 

Example 11.4 Leaning into a curve (cont.) 
❶ GETTING STARTED The forces 
exerted on the rollerblader are the 
gravitational force       and a contact force 
     exerted by the surface of the road.  
 
Now I see why she must lean into the 
turn: When she stands straight, the contact 
force is directed straight up, but as she 
leans, this force develops a component 
that pushes her toward the center of the 
circular arc and provides the necessary 
centripetal acceleration. 

   

FEp

G

   

Fsp

c
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Section 11.4: Rotational kinematics 

Example 11.4 Leaning into a curve (cont.) 

❶ GETTING STARTED I indicate 
the direction of this centripetal 
acceleration in my drawing and 
choose a set of axes—the x axis in 
the direction of the centripetal 
acceleration and the y axis upward.  
 
I must determine the angle θ that      
makes with the vertical. 

   

Fsp

c
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Example 11.4 Leaning into a curve (cont.) 

❷ DEVISE PLAN From my free-body diagram, I can 
draw two conclusions.  
 
First, the forces in the y direction must add to zero:      
 
 
Second, the x component of the contact force provides 
the centripetal acceleration. This gives me two 
equations from which I should be able to determine θ. 

© 2015 Pearson Education, Inc. 

Section 11.4: Rotational kinematics 

  ΣFy = 0.
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Example 11.4 Leaning into a curve (cont.) 

❸ EXECUTE PLAN Substituting the centripetal 
acceleration into the equation of motion in the x 
direction, 

where m is the inertia of the rollerblader. The + sign is 
consistent with my choice of axes. 
 
(The rollerblader’s inertia is not given, but I hope it will 
drop out and I won’t need it.) 

© 2015 Pearson Education, Inc. 

Section 11.4: Rotational kinematics 

  
ΣFx = max = m(+ac ) = +m

υ 2

r
, (1) 



Slide 11-80 

Example 11.4 Leaning into a curve (cont.) 

❸ EXECUTE PLAN From my diagram, I see that 
 
 
In the y direction I have 
The equation of motion in the y direction gives 
 
 
Note the constraint for y is zero, it was not for x 
 
 
 
 

© 2015 Pearson Education, Inc. 

Section 11.4: Rotational kinematics 

  ΣFx = Fsp x
c = Fsp

c sinθ .

  ΣFy = Fsp y
c + FEp y

G = Fsp
c cosθ − mg = 0.

  Fsp y
c = Fsp

c cosθ  and FEp y
G = −mg.

(2) 
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Example 11.4 Leaning into a curve (cont.) 

❸ EXECUTE PLAN Solving this equation for      and 
substituting the result into Eq. 2, I get 

© 2015 Pearson Education, Inc. 

Section 11.4: Rotational kinematics 

  
ΣFx = Fsp

c sinθ = mg
cosθ

⎛
⎝⎜

⎞
⎠⎟

sinθ = mg tanθ .

  Fsr
c
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Example 11.4 Leaning into a curve (cont.) 

❸ EXECUTE PLAN Substituting this result into Eq. 1 
then yields 
 
 
 
 
This gives an angle θ = tan–1(0.57) = 0.52 rad, or about 
30o. ✔ 

© 2015 Pearson Education, Inc. 

Section 11.4: Rotational kinematics 

  

mg tanθ = mυ 2

r

tanθ = υ 2

gr
= (5.0 m/s)2

(9.8 m/s2 )(4.5 m)
= 0.57.



Slide 11-83 

Example 11.4 Leaning into a curve (cont.) 

❹ EVALUATE RESULT The angle of the skater in 
Figure 11.25 is about 30o, and so my answer appears to 
be reasonable. 
 
It also seems plausible from everyday experience. 

© 2015 Pearson Education, Inc. 

Section 11.4: Rotational kinematics 
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Does an object moving in a circle always have centripetal 
acceleration? Does it always have rotational acceleration? 
Does it always have tangential acceleration?  
 
1.  Yes, yes, yes 
2.  Yes, yes, no 
3.  Yes, no, yes 
4.  No, yes, yes 
5.  Yes, no, no 
6.  No, yes, no 
7.  No, no, yes 
8.  No, no, no 

© 2015 Pearson Education, Inc. 

Section 11.4 
Question 5 
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Does an object moving in a circle always have centripetal 
acceleration? Does it always have rotational acceleration? 
Does it always have tangential acceleration?  
 
1.  Yes, yes, yes 
2.  Yes, yes, no 
3.  Yes, no, yes 
4.  No, yes, yes 
5.  Yes, no, no  
6.  No, yes, no 
7.  No, no, yes 
8.  No, no, no 

© 2015 Pearson Education, Inc. 

Section 11.4 
Question 5 
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Lecture Outline 

Rotation, cont. 

© 2015 Pearson Education, Inc. 
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Section Goals 

You will learn to 
•  Generalize the concepts of momentum, inertia, and 

kinetic energy to rotational cases. 
•  Relate the equations for translational momentum and 

kinetic energy to rotational situations. 
•  Apply the law of the conservation of angular 

momentum. 

© 2015 Pearson Education, Inc. 

Section 11.5: Angular momentum 
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•  Let us consider the following experiment: A stationary puck C 
fastened to a string of length r is struck by an identical puck moving 
at speed v. Treating the puck C as a particle,  
•  its kinetic energy can be written as 

•  Defining the term in the parenthesis as the rotational inertia I 
of the particle about the axis of rotation, I = mr2, we get 

where Krot is the rotational 
kinetic energy.  

•  The SI units of I are kg - m2. 

© 2015 Pearson Education, Inc. 

Section 11.5: Angular momentum 

  K = 1
2 mυ 2 = 1

2 m(rω )2 = 1
2 (mr 2 )ω 2

  Krot =
1
2 Iω 2
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•  Consider the two collisions below: In both cases the rods and 
pucks are identical and the puck has the same initial velocity. 
•  need an analog of p … how about mv à Iω? 
•  for the puck, using I = mr2 and ω = v/r, we get Iω = rmv. 
•  we can conclude that the larger the value of Iω (as in case a), 

the more easily the object can set another object in rotation.  

© 2015 Pearson Education, Inc. 

Section 11.5: Angular momentum 
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•  The quantity L𝜗 = Iω𝜗 is called the angular momentum,  
 
 
•  As fundamental as linear momentum – analog for rotation 
•  The SI units of L are: kg - m2/s. 
•  Momentum and distance from pivot matter 

© 2015 Pearson Education, Inc. 

Section 11.5: Angular momentum 

  
Lϑ ≡ Iωϑ = (mr 2 )

υt

r
⎛
⎝⎜

⎞
⎠⎟
= rmυt
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Section 11.5: Angular momentum 

•  As illustrated in the figure, 
the object does not have to 
rotate or revolve to have a 
nonzero L. 
•  r⊥ is called the lever 

arm. 
•  the angular momentum 

of a particle that moves 
in a straight line is 

L = r⊥ mω  (particle) 
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Section 11.5: Angular momentum 

•  Consider the particle in 
circular motion shown in the 
figure:  
•  The radial component of 

the force keeps the 
particle moving in a 
circle.  

•  The tangential component 
causes the particle’s 
angular momentum to 
change (changes v) 

•  In the absence of the 
tangential component, the 
angular momentum 
remains constant. 
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•  This observation leads us to the law of conservation 
of angular momentum: 
•  Angular momentum can be transferred from 

one object to another, but it cannot be created 
or destroyed.  

•  In the absence of tangential forces (isolated) 
ΔL𝜗 = 0  (no tangential forces) 

© 2015 Pearson Education, Inc. 

Section 11.5: Angular momentum 
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Exercise 11.6 Spinning faster 
Divers increase their spin by tucking in their arms and legs  
(Figure 11.32). Suppose the outstretched body of a diver rotates at 
1.2 revolutions per second before he pulls his arms and knees into 
his chest, reducing his rotational inertia from 9.4 kg · m2 to 3.1  
kg · m2. What is his rotational velocity after he tucks in his arms 
and legs? 

© 2015 Pearson Education, Inc. 

Section 11.5: Angular momentum 
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Exercise 11.6 Spinning faster (cont.) 

SOLUTION Once the diver is off the board, the only 
force exerted on his is the gravitational force exerted by 
Earth. This force does not affect the angular momentum 
of the diver (dropped objects do not spontaneously start 
to rotate), and so his angular momentum must remain 
constant. 

© 2015 Pearson Education, Inc. 

Section 11.5: Angular momentum 



Slide 11-96 

Exercise 11.6 Spinning faster (cont.) 

SOLUTION If his angular momentum before he tucks 
is Lϑ,i and that after is Lϑ,f, then 

Lϑ,f = Lϑ,i 
If ωϑ,f = Iiωϑ,i 

and so, from Eq. 11.34,   

© 2015 Pearson Education, Inc. 

Section 11.5: Angular momentum 

  
ωϑ ,f =

Ii

If

ωϑ ,i

 
= 9.4 kg ⋅m2

3.1 kg ⋅m2 (1.2 s−1) = 3.6 s−1.✔ 
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Checkpoint 11.8 

 Does the rotational kinetic energy of the diver in Exercise 
11.6 change as he pulls her arms in? Explain. 
 
Yes – pulls more mass in closer to center of rotation, so easier to 
spin. 
 
Because his arms’ centripetal acceleration must increase as he 
pulls them in, the force required to pull them in increases. This 
requires more work to be done, using his chemical energy. 

11.8 
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Example 11.7 Dumbbell collision 

In Figure 11.33, two identical pucks B 
and C, each of inertia m, are connected 
by a rod of negligible inertia and 
length ℓ that is free to rotate about a 
fixed axis through its center. A third 
identical puck A, initially moving at 
speed υi, strikes the combination as 
shown. After the elastic collision, what 
are the rotational velocity of the 
dumbbell and the velocity of puck A? 

© 2015 Pearson Education, Inc. 

Section 11.5: Angular momentum 
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Example 11.7 Dumbbell collision (cont.) 
❶ GETTING STARTED I begin with a two-part sketch  
(Figure 11.34), choosing an x axis in the direction of A’s initial 
motion and choosing counterclockwise as the positive direction of 
rotation (this is the direction in which I expect the dumbbell to 
rotate after the collision). 

© 2015 Pearson Education, Inc. 

Section 11.5: Angular momentum 
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Example 11.7 Dumbbell collision (cont.) 
❶ GETTING STARTED Because A hits B head-on and because 
the inertia of the dumbbell is twice that of A, I expect A to bounce 
back and move in the negative x direction after the collision, as 
my after-collision sketch shows. 

© 2015 Pearson Education, Inc. 

Section 11.5: Angular momentum 
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Example 11.7 Dumbbell collision (cont.) 

❷ DEVISE PLAN In elastic collisions the kinetic energy 
of the system remains constant (see Section 5.5). In this 
collision I need to consider kinetic energy of puck A and 
rotational kinetic energy of the dumbbell.  
Because there are two unknowns—A’s final velocity and 
the dumbbell’s final rotational velocity—I need an 
additional law to determine both. To this end I apply 
conservation of angular momentum (Eq. 11.38) to the 
system comprising puck A and the dumbbell. 
Just like linear collision – conserve energy & momentum 

© 2015 Pearson Education, Inc. 

Section 11.5: Angular momentum 
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Example 11.7 Dumbbell collision (cont.) 

❸ EXECUTE PLAN The initial kinetic energy of the 
system is that of puck A,          . The final kinetic energy 
is the sum of the (translational) final kinetic energy of A 
and the rotational kinetic energy of the dumbbell,  

            , where I is the rotational inertia of 
the dumbbell. 

© 2015 Pearson Education, Inc. 
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1
2 mυi

2

  Kf =
1
2 mυf

2 + 1
2 Iω f

2
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Example 11.7 Dumbbell collision (cont.) 

❸ EXECUTE PLAN Ignoring the negligible inertia of 
the rod, I can say that each puck in the dumbbell 
contributes a rotational inertia m(ℓ/2)2 given by  
Eq. 11.30, so that the rotational inertia of the dumbbell 
is 

© 2015 Pearson Education, Inc. 
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   I = 2m( / 2)2 = 1
2 m2. (1) 
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Example 11.7 Dumbbell collision (cont.) 

❸ EXECUTE PLAN Because the collision is elastic, the 
final kinetic energy must equal the initial kinetic energy, 
and so Ki = Kf,trans + Kf,rot 
 
 
where I have substituted for I the expression I obtained in 
Eq. 1. Dividing both sides by       gives 

© 2015 Pearson Education, Inc. 

Section 11.5: Angular momentum 

  
1
2 m

   
1
2 mυi

2 = 1
2 mυf

2 + 1
2 Iω i

2 = 1
2 mυf

2 + 1
2 ( 1

2 m2 )ω f
2 ,

  υi
2 =υf

2 + 1
2 

2ω f
2.
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Example 11.7 Dumbbell collision (cont.) 

❸ EXECUTE PLAN Because puck A moves along the 
x axis,              and               . Because                  I get 

© 2015 Pearson Education, Inc. 

Section 11.5: Angular momentum 

  υi
2 =υx ,i

2

   υx ,i
2 =υx ,f

2 + 1
2 

2ωϑ ,f
2 .

  υf
2 =υx ,f

2

 ω f
2 =ωϑ ,f

2

(2) 
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Example 11.7 Dumbbell collision (cont.) 

❸ EXECUTE PLAN Next I turn to conservation of 
angular momentum. The change in A’s angular 
momentum is 
 
 
 
 
like with p, direction matters! 

© 2015 Pearson Education, Inc. 

Section 11.5: Angular momentum 

   ΔLAϑ = LAϑ ,f − LAϑ ,i = (/2)mυx ,f − (/2)mυx ,i

   = (/2)m(υx ,f −υx ,i ).
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Example 11.7 Dumbbell collision (cont.) 

❸ EXECUTE PLAN The initial angular momentum of 
the dumbbell Ldϑ,i about the rotation axis is zero; its 
final angular momentum about this axis is, from  
Eq. 11.34, Ldϑ,f = Iωϑ,i. The change in the dumbbell’s 
angular momentum is thus 

© 2015 Pearson Education, Inc. 

Section 11.5: Angular momentum 

   ΔLdϑ = Iωϑ ,f − 0 = 1
2 m2ωϑ ,f .
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Example 11.7 Dumbbell collision (cont.) 

❸ EXECUTE PLAN Because the system is isolated, its 
angular momentum doesn’t change, so 
 

  ΔLϑ = ΔLAϑ = ΔLdϑ 
 
 

 
or  υx,i = υx,f + ℓωϑ,f.                            (3) 

© 2015 Pearson Education, Inc. 
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   = (/2)m(υx ,f –υx ,i )+
1
2 m2ωϑ ,f  = 0
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Example 11.7 Dumbbell collision (cont.) 

❸ EXECUTE PLAN: we have 
    and  υx,i = υx,f + ℓωϑ,f.                             

  
solving: 
 
and substituting this back, 

© 2015 Pearson Education, Inc. 

Section 11.5: Angular momentum 

   
ωϑ ,f  =

4υx ,i

3
= +

4υi

3
. ✔ 

  υx ,f = – 1
3υx ,i = – 1

3υi . ✔ 

   υx ,i
2 =υx ,f

2 + 1
2 

2ωϑ ,f
2 .
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Example 11.7 Dumbbell collision (cont.) 

❹ EVALUATE RESULT The final rotational velocity 
is positive, indicating that the dumbbell in Figure 11.34 
rotates counterclockwise, in agreement with my 
drawing. The x component of the final velocity of puck 
A is negative, indicating that it bounces back, as I 
expected. 

© 2015 Pearson Education, Inc. 
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If both the rotational inertia I and the rotational speed ω 
of an object are doubled, what happens to the object’s 
rotational kinetic energy? 
 
1.  There is no change. 
2.  It is doubled. 
3.  It is quadrupled. 
4.  It increases by a factor of eight. 
5.  It is halved. 
6.  It decreases by a factor of four. 
7.  It decreases by a factor of eight. 

© 2015 Pearson Education, Inc. 

Section 11.5 
Question 6 
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If both the rotational inertia I and the rotational speed ω 
of an object are doubled, what happens to the object’s 
rotational kinetic energy? 
 
1.  There is no change. 
2.  It is doubled. 
3.  It is quadrupled. 
4.  It increases by a factor of eight – K = ½Iω2 

5.  It is halved. 
6.  It decreases by a factor of four. 
7.  It decreases by a factor of eight. 

© 2015 Pearson Education, Inc. 

Section 11.5 
Question 6 



Slide 11-113 

Section Goal 

You will learn to 
•  Compute the rotational inertia for collections of 

particles and extended objects. 

© 2015 Pearson Education, Inc. 

Section 11.6: Rotational inertia of extended 
objects 
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Section 11.6: Rotational Inertia of extended 
objects 

•  To apply the concepts of rotational 
inertia to extended objects as seen in 
the figure (part a), imagine breaking 
down the object to small segments 
(part b). 

•  The rotational kinetic energy of the 
object is the sum of the kinetic 
energies of these small elements: 

•  Using υ = rω, we get 
   
Krot =

1
2δm1υ1

2 + 1
2δm2υ2

2 += ( 1
2δmnυn

2 )
n
∑

  
Krot =

1
2δmn(ωrn )2⎡⎣ ⎤⎦

n
∑ = 1

2 δmnrn
2

n
∑⎡
⎣⎢

⎤
⎦⎥
ω 2
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•  Using the definition of rotational inertia, we get 

•  Therefore, the rotational inertia of the extended object 
is given by 

•  In the limit δmn → 0, the sum becomes 

© 2015 Pearson Education, Inc. 

Section 11.6: Rotational Inertia of extended 
objects 

  
Krot =

1
2 In

n
∑⎡
⎣⎢

⎤
⎦⎥
ω 2 = 1

2 Iω 2

  
I = δmnrn

2

n
∑

  
I = lim

δmn→0
δmnrn

2

n
∑ ≡ r 2 dm∫ (extended object)
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Section 11.6: Rotational Inertia of extended 
objects 
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Example 11.8 Rotational inertia of a hoop about 
an axis through its center 

Calculate the rotational inertia of a hoop of inertia m 
and radius R about an axis perpendicular to the plane of 
the hoop and passing through its center. 

© 2015 Pearson Education, Inc. 

Section 11.6: Rotational inertia of extended 
objects 
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Section 11.6: Rotational inertia of extended 
objects 

Example 11.8 Rotational inertia of a hoop about 
an axis through its center (cont.) 

❶ GETTING STARTED I begin 
by drawing the hoop and a 
coordinate system (Figure 11.36). 
Because the axis goes through the 
center of the hoop, I let the origin 
be at that location. The axis of 
rotation is perpendicular to the 
plane of the drawing and passes 
through the origin. 
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Example 11.8 Rotational inertia of a hoop about 
an axis through its center (cont.) 

❷ DEVISE PLAN Equation 11.43 gives the rotational inertia 
of an object as the sum of the contributions from many small 
segments. If I divide the hoop into infinitesimally small 
segments each of inertia dm, I see that each segment lies the 
same distance r = R from the rotation axis (one such segment 
is shown in Figure 11.36). This means I can pull the constant 
r2 = R2 out of the integral in Eq. 11.43, making it easy to 
calculate. 

© 2015 Pearson Education, Inc. 

Section 11.6: Rotational inertia of extended 
objects 

  
I = lim

δmn→0
δmnrn

2

n
∑ ≡ r 2 dm∫ (extended object)
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Example 11.8 Rotational inertia of a hoop about 
an axis through its center (cont.) 

❸ EXECUTE PLAN Substituting r = R in Eq. 11.43, I 
obtain 

© 2015 Pearson Education, Inc. 

Section 11.6: Rotational inertia of extended 
objects 

  I = r 2 dm = R2 dm = mR2∫∫ .✔ 
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Example 11.8 Rotational inertia of a hoop about 
an axis through its center (cont.) 

❹ EVALUATE RESULT This result makes sense 
because all the material contained in the hoop lies at the 
same distance R from the rotation axis. Therefore the 
rotational inertia of the hoop is the same as that of a 
particle of inertia m located a distance R from the 
rotation axis, which I know from Eq. 11.30: I = mR2. 

© 2015 Pearson Education, Inc. 

Section 11.6: Rotational inertia of extended 
objects 
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Example 11.9 Rotational inertia of a rod about 
an axis through its center 

Calculate the rotational inertia of a uniform solid rod of 
inertia m and length ℓ about an axis perpendicular to the 
long axis of the rod and passing through its center. 

© 2015 Pearson Education, Inc. 

Section 11.6: Rotational inertia of extended 
objects 
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Example 11.9 Rotational inertia of a rod about 
an axis through its center (cont.) 

❶ GETTING STARTED I begin with a sketch of the rod. For this 
one-dimensional object, I choose an x axis that lies along the rod’s 
long axis, and because the rotation being analyzed is about a 
rotation axis located through the rod’s center, I choose this point 
for the origin of my x axis (Figure 11.37). 

© 2015 Pearson Education, Inc. 

Section 11.6: Rotational inertia of extended 
objects 
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Example 11.9 Rotational inertia of a rod about 
an axis through its center (cont.) 

❷ DEVISE PLAN Because the rod is a uniform one-
dimensional object, I can use Eq. 11.44 to calculate its 
rotational inertia. First I determine the inertia per unit 
length λ. Then I carry out the integration from one end 
of the rod (x = – ℓ/2) to the other (x = +ℓ/2). 

© 2015 Pearson Education, Inc. 

Section 11.6: Rotational inertia of extended 
objects 
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Example 11.9 Rotational inertia of a rod about 
an axis through its center (cont.) 

❸ EXECUTE PLAN The inertia per unit length is λ = m/ℓ.  
That gives dm = λ dx. Substituting this expression and the 
integration boundaries into Eq. 11.44,  

© 2015 Pearson Education, Inc. 

Section 11.6: Rotational inertia of extended 
objects 

   
I = λ x2dx = m


x2dx =

−/2

+/2

∫
m


x3

3
⎡

⎣
⎢

⎤

⎦
⎥
−/2

+/2

= 1
2 m2∫ .✔ 
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Example 11.9 Rotational inertia of a rod about 
an axis through its center (cont.) 

❹ EVALUATE RESULT If I approximate each half of 
the rod as a particle located a distance ℓ/4 from the 
origin I chose in Figure 11.37, the rotational inertia of 
the rod would be, from Eq. 11.30, 
This is not too far from the value I obtained, so my 
answer appears to be reasonable. 
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Section 11.6: Rotational inertia of extended 
objects 

Example 11.10 Rotational inertia of hollow-core 
cylinder 

Calculate the rotational inertia of a 
uniform hollow-core cylinder of 
inner radius Rinner, outer radius 
Router, length ℓ, and inertia m about 
an axis parallel to the cylinder’s 
length and passing through its 
center, as in Figure 11.38. 
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Example 11.10 Rotational inertia of hollow-core 
cylinder (cont.) 

❶ GETTING STARTED As in Example 11.9, I will 
divide this cylinder into segments and integrate the 
contributions of all the segments over the volume of the 
cylinder. There are many ways to divide the cylinder 
into small segments dm, but I can simplify the 
integration by exploiting the cylindrical symmetry. 
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Section 11.6: Rotational inertia of extended 
objects 
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Example 11.10 Rotational inertia of hollow-core 
cylinder (cont.) 

❶ GETTING STARTED Starting at the inner face of the wall, at 
Rinner, and moving toward the outer face, at Router, I divide the 
wall into a series of many thin-walled cylindrical shells, each of 
thickness dr and length ℓ and all concentric with the original 
cylinder, as shown in my top-down sketch of the cylinder 
(Figure 11.39). 
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Section 11.6: Rotational inertia of extended 
objects 
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Example 11.10 Rotational inertia of hollow-core 
cylinder (cont.) 

❶ GETTING STARTED Because each shell is infinitely thin, all 
the material in each shell is the same distance r from the axis of 
rotation, which simplifies the calculation. 
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Section 11.6: Rotational inertia of extended 
objects 
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Example 11.10 Rotational inertia of hollow-core 
cylinder (cont.) 

❷ DEVISE PLAN The hollow-core cylinder is a 
uniform, three-dimensional object, so I should use Eq. 
11.46. First, I must determine the inertia per unit 
volume, m/V, for it. Next, I must express the 
infinitesimal volume dV of each shell in terms of r and 
dr. Finally, I should carry out the integration for values 
of r from Rinner to Router. 
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Section 11.6: Rotational inertia of extended 
objects 
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Example 11.10 Rotational inertia of hollow-core 
cylinder (cont.) 

❸ EXECUTE PLAN Each thin-walled shell has an 
inertia dm = ρ dV, where ρ is inertia per unit volume and 
dV is the volume of the shell. To determine ρ = m/V for 
the cylinder, I divide its inertia m by its volume V. The 
volume of the solid part of the cylinder plus the empty 
space that forms its core is              and that of the core 
is              So the volume of the cylinder is 
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Example 11.10 Rotational inertia of hollow-core 
cylinder (cont.) 

❸ EXECUTE PLAN Each shell has an outer surface 
area of 2πrℓ and thickness dr, and so its volume is 
dV = 2πrℓ dr. The rotational inertia of the entire 
cylinder is thus 
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Section 11.6: Rotational inertia of extended 
objects 
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Example 11.10 Rotational inertia of hollow-core 
cylinder (cont.) 

❸ EXECUTE PLAN Working out the integral, I get 
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Example 11.10 Rotational inertia of hollow-core 
cylinder (cont.) 

❸ EXECUTE PLAN Factoring 
                                                                    I get for the 
rotational inertia of the hollow-core cylinder 
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Example 11.10 Rotational inertia of hollow-core 
cylinder (cont.) 

❹ EVALUATE RESULT In the limit Rinner = Router, the 
cylinder becomes a thin-walled cylindrical shell of 
radius Router, and my result becomes                   as I 
expect for an object that has all its material a distance R 
from the axis of rotation. 
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Section 11.6: Rotational Inertia of extended 
objects 

•  Sometimes you need to know the 
moment of inertia about an axis 
through an unusual position (for an 
example, position P on the object 
shown in the figure). 

•  You can find it if you know the 
rotational inertia about a parallel 
axis through the center of mass:   

I = Icm + md 2 

•  This relationship is called the 
parallel-axis theorem.  
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Example 11.11 Rotational inertia of a rod about 
an axis through one end 

Use the parallel-axis theorem to calculate the rotational 
inertia of a uniform solid rod of inertia m and length ℓ 
about an axis perpendicular to the length of the rod and 
passing through one end. 
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Example 11.11 Rotational inertia of a rod about 
an axis through one end (cont.) 

❶ GETTING STARTED I first make a sketch of the rod, 
showing its center of mass and the location of the rotational 
axis (Figure 11.41). Because I am told to use the parallel-
axis theorem, I know I have to work with the rod’s center of 
mass. I know that for a uniform rod, the center of mass 
coincides with the geometric center, and so I mark that 
location in my sketch. 
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Example 11.11 Rotational inertia of a rod about 
an axis through one end (cont.) 

❷ DEVISE PLAN In Example 11.9, I determined that 
the rotational inertia about an axis through the rod’s 
center is                  For a uniform rod, the center of 
mass coincides with the geometric center, so I can use 
Eq. 11.53 to determine the rotational inertia about a 
parallel axis through one end. 
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Example 11.11 Rotational inertia of a rod about 
an axis through one end (cont.) 

❸ EXECUTE PLAN The distance between the rotation 
axis and the center of mass is              and so, with 
                   from Example 11.9, Eq. 11.53 yields 
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Example 11.11 Rotational inertia of a rod about 
an axis through one end (cont.) 

❹ EVALUATE RESULT I obtained the same answer 
in Checkpoint 11.10 by directly working out the 
integral. 
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speeding bullet 

© 2015 Pearson Education, Inc. 

Homework 

Speed of the bullet to make it through both holes? 
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speeding bullet 

© 2015 Pearson Education, Inc. 

Homework 

in time t, need shaft to rotate by θ = ωt 
also need to cover distance D = vt 
note ω=2π/T, eliminate t 
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11.14 

•  Free body diagram! 

© 2015 Pearson Education, Inc. 

Homework 

T1 

T2 

mg 
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11.14 

•  T1y – T2y – mg = 0 
•  T1x = T2x + mg 

•  T1x > T2x 
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Homework 

T1 

T2 

mg 



Slide 11-147 

11.08 

•  What happens after release? 
•  No interaction left, has to travel in a straight line.  
•  Continues with velocity it had at that instant. 
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Homework 
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11.18 

•  Rotating means spending some energy … 

© 2015 Pearson Education, Inc. 

Homework 
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11.17 

•  If I increases, and L is conserved … 
    … Iω = constant 
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Homework 
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11.29 

•  Free body diagram, but put one axis along the string 

•  That is the radial direction, forces sum to mv2/l 
•  Forces are component of mg, T 

•  Speed? mgΔy = K 

•  Max tension? When vertical! 
© 2015 Pearson Education, Inc. 

Homework 
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11.37 

•  A: ΔUG = ΔK = Kf to get speed, Δy = h-d 
•  B: Free body diagram? FN – mg = mv2/R 
•  C: at ¼ around, what is Δy?  

•  h-d-R 
•  D: no horizontal force now, normal = centripetal 
•  E: you have force … 

© 2015 Pearson Education, Inc. 

Homework 
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11.48 

•  L = Iω = mr2ω = const 
•  if r à r/2, then ω à 4ω 

•  v = rω à (½)(4) = 2 
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Homework 
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11.41 

•  convert ω to proper units (times 2π …) 
•  I = mr2 assuming ball is a point object 
•  K = ½Iω2  
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Homework 
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11.60 

•  More mass farther from axis of rotation gives larger I 
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Homework 
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11.65 

•  Conserve energy! 

•  initial PE = Krot + Klin 

•  no slipping, v=rω 
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Homework 
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11.70 

•  Rod changes its center of mass by how much? 

•  Change in gravitational PE = rotational KE 
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Homework 
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Concepts: Rotational kinematics 

•  During rotational motion, all the particles in an object 
follow circular paths around the axis of rotation. 

•  The rotational velocity ω of an object is the rate at 
which the object’s rotational coordinate q changes. 

•  The rotational acceleration α is the rate at which an 
object’s rotational velocity changes. 
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Chapter 11: Summary 
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Quantitative Tools: Rotational kinematics 
•  When an object travels a distance s along the circumference of 

a circle of radius r, the object’s rotational coordinate  is a 
unitless quantity defined as s divided by the circle’s radius: 

•  The arc distance s is measured from the positive x axis. To 
measure  we need to choose a direction of increasing  
and a zero, just as we need to specify a direction of increasing 
x and an origin to measure position along an axis. 
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r
.
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Quantitative Tools: Rotational kinematics 

•  For any rotating object, the rotational velocity and rotational 
acceleration are 
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Chapter 11: Summary 

  

ωϑ = dϑ
dt

αϑ =
dωϑ

dt
= d 2ϑ

dt2 .
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Concepts: Translational variables for rotating 
objects 

•  The velocity    of an object moving along a circle is always 
perpendicular to the object’s position vector    measured from 
the axis of rotation. 

•  The tangential component t of the velocity is tangent to the 
circle. The radial component r of the velocity is zero.  

•  An object moving in a circle has a nonzero acceleration (even 
if its speed is constant) because the direction of the velocity 
changes. 

•  An inward force is required to make an object move in a 
circle, even at constant speed. 
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Chapter 11: Summary 
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Quantitative Tools: Translational variables for 
rotating objects 

•  The tangential and radial components of the velocity 
of an object moving along a circular path are 

t = rω 

r = 0. 
•  The radial component of the acceleration is 
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Chapter 11: Summary 

  
ar = −υ

2

r
.
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Quantitative Tools: Translational variables for 
rotating objects 

•  This radial component is called the centripetal 
acceleration and is directed toward the center of the 
circle. It can also be written as 

ar = –rω2. 
•  The tangential component of the acceleration is 

at = rα. 
•  The magnitude of the acceleration is 
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  a = ar
2 + at
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Concepts: Constant rotational acceleration 

•  If the tangential acceleration at of a rotating object is 
constant, its rotational acceleration a is also constant.  

•  In only that case, the rotational kinematics 
relationships for constant rotational acceleration 
apply. 
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Chapter 11: Summary 
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Quantitative Tools: Constant rotational 
acceleration 

•  If an object with constant rotational acceleration α 
initially has a rotational coordinate i and a 
rotational velocity ω,i, then after a time interval Δt 
its rotational coordinate and rotational velocity are 
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Chapter 11: Summary 

  

ϑf =ϑ i +ωϑ ,iΔt + 1
2αϑ (Δt)2

ωϑ ,f =ωϑ ,i +αϑΔt.
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Concepts: Rotational inertia 

•  Rotational inertia is a measure of an object’s 
tendency to resist any change in its rotational 
velocity.  

•  The rotational inertia depends on the inertia of the 
object and on how that inertia is distributed. 

 
•  The SI units of rotational inertia are kilograms-

meters-squared (kg  m2). 
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Chapter 11: Summary 
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Quantitative Tools: Rotational inertia 
•  The rotational inertia I of a rotating particle of inertia m is 

I = mr2, 
where r is the distance from the particle to the rotation axis. 
For an extended object, the rotational inertia is 

•  The parallel-axis theorem: If Icm is the rotational inertia of an 
object of inertia m about an axis A through the object’s center 
of mass, the rotational inertia I of the object about an axis 
parallel to A and a distance d away from A is 

I = Icm + md2. 
© 2015 Pearson Education, Inc. 
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  I = r 2dm.∫
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Concepts: Rotational kinetic energy and 
angular momentum 

•  Rotational kinetic energy is the kinetic energy of an object due 
to its rotational motion. 

•  Angular momentum L is the capacity of an object to make 
other objects rotate. 

•  A particle can have angular momentum even if it is not rotating. 
•  The law of conservation of angular momentum says that angular 

momentum can be transferred from one object to another but 
cannot be created or destroyed. The angular momentum of an 
object or system is constant when no tangential forces are 
exerted on it. 
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Chapter 11: Summary 
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Quantitative Tools: Rotational kinetic energy 
and angular momentum 

•  The rotational kinetic energy of an object that has 
rotational inertia I and rotational speed ω is 

•  The angular momentum of an object that has rotational 
inertia I and rotational velocity ω is 

L = Iω. 
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  Krot =
1
2 Iω 2.
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Quantitative Tools: Rotational kinetic energy 
and angular momentum 

•  The angular momentum of a particle of inertia m and 
speed  about an axis of rotation is 

L = r m, 
where r is the perpendicular distance from the axis 
to the line of action of the particle’s momentum. The 
distance r is called the lever arm distance of the 
momentum relative to the axis. 
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