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Chapter Goal: To extend the description of motion 
in one dimension to include changes in velocity. This 
type of motion is called acceleration. 
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Chapter 3: Acceleration 
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•  The non-uniform motion of an object can be described by the 
concept of acceleration. 

•  You will learn how to describe acceleration both graphically 
and mathematically. 

© 2015 Pearson Education, Inc.  

Chapter 3 Preview 
Looking Ahead: Changes in velocity 
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•  An object speeding up as it falls: 

•  Gravity is kind of a big deal 
•  Near the earth’s surface, it is relatively simple 
•  You will learn how to account for the influence of gravity for 

objects moving near the surface of the Earth. 

© 2015 Pearson Education, Inc.  

Chapter 3 Preview 
Looking Ahead: Acceleration due to gravity 
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•  Generalization of the “frame sequence” from Ch. 2:  
 motion diagrams. 

•  Learn how to display and interpret motion using them 
•  How to determine position, displacement, speed, velocity, and 

acceleration from them 

© 2015 Pearson Education, Inc.  

Chapter 3 Preview 
Looking Ahead: Motion diagrams 
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Chapter 3 Preview 
Looking Back: Visualizing motion 

•  Ch. 2: analyzed motion by 
looking at individual frames 
of a film clip recorded at 
equally spaced times. 

•  Workable, but discrete 
approach is limited 

 (if only we had some math for that) 
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•  Examined different graphical and mathematical ways 
of representing motion. 

Chapter 3 Preview 
Looking Back: Representations of motion 

© 2015 Pearson Education, Inc.  
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RQ 3.1 

Which figure could represent the 
velocity versus time graph of a 
motorcycle whose speed is 
increasing? 
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RQ 3.1 

Which figure could represent the 
velocity versus time graph of a 
motorcycle whose speed is 
increasing? 
 
 
magnitude of v has to increase (sign 
not important) 
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Suppose that you toss a rock upward so that it rises and then falls back to the 
earth. If the acceleration due to gravity is 9.8 m/sec2, what is the rock’s 
acceleration at the instant that it reaches the top of its trajectory (where its 
velocity is momentarily zero)? Assume that air resistance is negligible. 

1.  The rock has a downward acceleration of 9.8 m/s2.   
2.   The rock has a downward acceleration of 19.6 m/s2.   
3.   The rock has an upward acceleration of 19.6 m/s2.   
4.   The rock has an upward acceleration of 9.8 m/s2.   
5.   The acceleration of the rock is zero.   

 

© 2015 Pearson Education, Inc.  

RQ 3.2 
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Suppose that you toss a rock upward so that it rises and then falls back to the 
earth. If the acceleration due to gravity is 9.8 m/sec2, what is the rock’s 
acceleration at the instant that it reaches the top of its trajectory (where its 
velocity is momentarily zero)? Assume that air resistance is negligible. 

1.  The rock has a downward acceleration of 9.8 m/s2.   

This is the whole thing about gravity near earth’s surface. 
 
There is always nearly constant acceleration of 9.8 m/s2 

© 2015 Pearson Education, Inc.  

RQ 3.2 



Slide 3-12 

On a straight road, a car speeds up at a constant rate from rest to 20 m/s over a 
5 second interval and a truck slows at a constant rate from 20 m/s to a 
complete stop over a 10 second interval. How does the distance traveled by the 
truck compare to that of the car? 

  
1.  The truck travels the same distance as the car.   
2.  There is not enough information to answer the question.   
3.  The truck travels twice as far as the car.  
4.  The truck travels half as far as the car.   

© 2015 Pearson Education, Inc.  

RQ 3.3 
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On a straight road, a car speeds up at a constant rate from rest to 20 m/s over a 
5 second interval and a truck slows at a constant rate from 20 m/s to a 
complete stop over a 10 second interval. How does the distance traveled by the 
truck compare to that of the car? 

  
1.  The truck travels the same distance as the car.   
2.  There is not enough information to answer the question.   
3.  The truck travels twice as far as the car.   
4.  The truck travels half as far as the car.   

•  Car: a = (20 m/s)/(5 s) = 4 m/s2 

xc(t)= xic + vict + ½at2 = ½at2 = 50 m 
•  Truck: a = (-20 m/s)/(10 s) = -2 m/s2 

xt(t)= xit + vitt + ½at2 = vict - ½at2 = 100 m 

© 2015 Pearson Education, Inc.  

RQ 3.3 
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•  On Mars, where air resistance is negligible, an 
astronaut drops a rock from a cliff and notes that the 
rock falls about d meters during the first t seconds of 
its fall. Assuming the rock does not hit the ground 
first, how far will it fall during the first 4t seconds of 
its fall? 

© 2015 Pearson Education, Inc.  

RQ 3.4 
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•  On Mars, where air resistance is negligible, an 
astronaut drops a rock from a cliff and notes that the 
rock falls about d meters during the first t seconds of 
its fall. Assuming the rock does not hit the ground 
first, how far will it fall during the first 4t seconds of 
its fall? 

•  Don’t overthink it: distance ~ t2 

•  If time is up 4x, distance is up 16x 

© 2015 Pearson Education, Inc.  

RQ 3.4 
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Concepts 

© 2015 Pearson Education, Inc.  

Chapter 3: Acceleration 
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Section Goals 

© 2015 Pearson Education, Inc.  

Section 3.1: Changes in velocity 

•  Define acceleration from velocity. 
•  Identify if an object is accelerating from several 

different graphical representations of motion. 
•  Understand the vector relationships between velocity 

and acceleration. 
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•  If an object’s velocity is changing, the object is 
accelerating. 

•  The x component of the average acceleration of an 
object is the change in the x component of the 
velocity divided by the time interval during which 
this change took place. 

•  The SI unit of acceleration is m/s2. 

© 2015 Pearson Education, Inc.  

Section 3.1: Changes in velocity 
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Section 3.1: Changes in velocity 

•  Whenever an object’s 
velocity vector    and 
acceleration vector    point 
in the same direction, the 
object speeds up. 

•  If    and    point in the 
opposite direction, the 
object slows down. 

 

υ

  
a

  
a 


υ
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•  For accelerating objects, the x(t) curve is a not a straight line.  
•  The figure shows the x(t) curve for two accelerating objects: 

•  For each object, consider the displacements ∆x1 and ∆x2 
during two equal time intervals (∆t) at two different times.  

•  If the displacement increases with time then the velocity is 
increasing (for example, ∆x2 > ∆x1). 

•  If the displacement decreases then velocity is decreasing. 

© 2015 Pearson Education, Inc.  

Section 3.1: Changes in velocity 
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•  The curvature of the x(t) curve is a measure of the x 
component of acceleration (ax).  

•  An upward curvature corresponds to a positive ax: 
•  The curve lies above the tangent; faster than linear 

•  A downward curvature corresponds to a negative ax:  
•  The curve lies below the tangent; slower than linear 

© 2015 Pearson Education, Inc.  

Section 3.1: Changes in velocity 
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Section Goals 

© 2015 Pearson Education, Inc.  

Section 3.2: Acceleration due to gravity 

•  Identify gravity as the cause of the vertical 
acceleration of an object moving near the surface of 
the Earth. 

•  Display the effects of gravity of an object using 
motion diagrams.  

•  Model the idealized case of vertical motion in the 
absence of other influences, such as air resistance, 
using the concept of free fall. 
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•  An object falling in a straight 
line toward the Earth’s 
surface: accelerated motion. 

•  A falling ball recorded at 
equal time intervals of 0.05 s.  

•  The increasing displacements 
tells us that the speed 
increases as it falls: the ball 
accelerates. 

© 2015 Pearson Education, Inc.  

Section 3.2: Acceleration due to gravity 
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 Hold a book and a sheet of paper, cut to the same size as the 
book, side by side 1 m above the floor. Hold the paper parallel to 
the floor and the book with its covers parallel to the floor, and 
release them at the same instant. Which hits the floor first? Now 
put the paper on top of the book and repeat the experiment. What 
do you notice? 

© 2015 Pearson Education, Inc. 

Checkpoint Question 3.5 

3.5 

•  Does the acceleration of an object as it falls depend on the 
physical characteristics of the object? 
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Section 3.2: Acceleration due to gravity 

•  What is the magnitude of 
acceleration due to gravity as an 
object falls? 
•  feather vs stone 
•  in a vacuum, no air resistance. 
•  the acceleration due to gravity 

does not depend on the physical 
characteristics of object 
•  The motion of an object 

under the influence of gravity 
only is called free fall. 

 •  what properties are most fundamental?  
•  which are circumstantial? 
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https://youtu.be/frZ9dN_ATew 
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•  What is the magnitude of acceleration 
due to gravity as an object falls? 
•  like last time, position vs time 

changes faster than linearly 
•  displacement between adjacent 

times is linear 
•  therefore, the velocity 

increases at a constant rate.  

 

© 2015 Pearson Education, Inc.  

Section 3.2: Acceleration due to gravity 
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•  What is the magnitude of acceleration due to gravity 
as an object falls? 
•  without air resistance, the magnitude of the 

acceleration of all falling objects is 9.8 m/s2. 
•  Means? The amount of time it takes to fall from a 

certain height is the same for all falling objects. 

© 2015 Pearson Education, Inc.  

Section 3.2: Acceleration due to gravity 



Slide 3-29 

Section Goals 

© 2015 Pearson Education, Inc.  

Section 3.3: Projectile motion 

•  Define the motion of objects that are launched but not 
self-propelled as projectile motion. 

•  Model the vertical trajectory of projectiles as objects 
that are in free fall. 

•  Represent projectile motion graphically using motion 
diagrams and motion graphs. 
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•  An object that is launched but not self-propelled is 
called a projectile. 

•  Its motion is called projectile motion.  
•  The path the object follows is called its trajectory. 

© 2015 Pearson Education, Inc.  

Section 3.3: Projectile motion 

(This is not an example of physicists being careful about terminology.) 
 
(There is no possibility of ambiguity here.) 
 
(This is an example of physicists being pedantic sometimes.) 
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Section 3.3: Projectile motion 

Throw a ball straight up 
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•  Consider x(t) and v(t) curves: 
•  As the ball moves upward it slows down 

•  v and a are in opposite directions 
•  since v is up, a must be down 

•  As the ball moves down it speeds up 
•  v and a must be in the same direction 
•  since v is down, a is down  

•  the v (t) curve is a straight line for the whole motion 
•  slope approximately the acceleration due to gravity.  

•  once the object is released, the rest of its motion is 
determined by gravity alone (free fall). 

© 2015 Pearson Education, Inc.  

Section 3.3: Projectile motion 
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 Imagine throwing a ball downward so that it has an initial 
speed of 10 m/s.  
 

 What is its speed 1 s after you release it?  
 2 s after? 

© 2015 Pearson Education, Inc.  

Checkpoint 3.8 

3.8 
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Constant acceleration: gain/lose same speed each second 
 

•  launched downward, so it speeds up 

•  ~10m/s2, 1 second later: gain 10m/s è 20m/s 

•  2 seconds later: gain another 10m/s è 30m/s 

© 2015 Pearson Education, Inc.  
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•  What happens at the very top of the trajectory of a 
ball launched upward? 
•  At the top, velocity changes from up to down, 

which means that acceleration must be nonzero.  
•  At the very top, the instantaneous velocity is zero. 
•  Acceleration, however, is nonzero. 

•  Acceleration is always ~9.8m/s2 

© 2015 Pearson Education, Inc.  

Section 3.3: Projectile motion 
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Section Goals 

© 2015 Pearson Education, Inc.  

Section 3.4: Motion diagrams 

You will learn to 
•  Generalize the “frame sequence” diagram introduced 

in Chapter 2 to a new visual representation called a 
motion diagram. 

•  Represent and correlate the kinematic quantities, 
position, displacement, velocity, and acceleration on 
motion diagrams. 
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•  Motion diagrams are pictorial representations of objects in motion: 
•  visualize the motion of an object described in a problem.  
•  they show an object’s x, v, and a at several equally spaced 

instances (including at the start and end). 
•  it is basically a cartoon 

•  Below: a motion diagram for a bicycle with an initial velocity of 8.0 
m/s slowing down to a stop. 

© 2015 Pearson Education, Inc.  

Section 3.4: Motion diagrams 
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Procedure: Analyzing motion using motion 
diagrams 

Solving motion problems: a diagram summarizing what you have & 
what you want may all but solve the problem 
1.  Use dots to represent the moving object at equally spaced time 

intervals. If the object moves at constant speed, the dots are 
evenly spaced; if the object speeds up, the spacing between the 
dots increases; if the object slows down, the spacing decreases. 

2.  Choose an x (position) axis that is convenient for the problem. 
Most often this is an axis that (a) has its origin at the initial or 
final position of the object and (b) is oriented in the direction of 
motion or acceleration. 

© 2015 Pearson Education, Inc.  

Section 3.4: Motion diagrams 
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Procedure: Analyzing motion using motion 
diagrams (cont.) 

3.  Specify x & v at all relevant instants. Particularly, 
specify  
•  the initial conditions - position and velocity at the beginning of the 

time interval of interest 
•  the final conditions - position and velocity at the end of that time 

interval.  
•  also note where v reverses direction or a changes.  
•  unknown parameters = question mark. 

4.  Indicate the acceleration of the object between all the 
instants specified  

© 2015 Pearson Education, Inc.  

Section 3.4: Motion diagrams 
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Procedure: Analyzing motion using motion 
diagrams (cont.) 

5.  With more than one object, draw separate diagrams 
side by side, using one common x axis. 

6.  If the object reverses direction, separate the motion 
diagram into two parts, one for each direction  

© 2015 Pearson Education, Inc.  

Section 3.4: Motion diagrams 
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 Make a motion diagram for the following situation: A 
seaside cliff rises 30 m above the ocean surface, and a person 
standing at the edge of the cliff launches a rock vertically upward 
at a speed of 15 m/s. After reaching the top of its trajectory, the 
rock falls into the water. 

© 2015 Pearson Education, Inc.  

Checkpoint 3.9 

3.9 
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Example 3.2 Can this be? 

© 2015 Pearson Education, Inc.  

Section 3.4: Motion diagrams 

A newspaper article you read claims that by the time it 
reaches the ground, a stone dropped from the top of the 
Empire State Building (which has approximately 100 
floors) “travels the length of a window faster than you 
can say Watch out! A stone!” Estimate whether this is 
true. 
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Example 3.2 Can this be? (cont.) 

© 2015 Pearson Education, Inc.  

Section 3.4: Motion diagrams 

❶ GETTING STARTED At first this problem appears 
ill-defined.  

1.  What am I supposed to calculate?  
2.  Where to begin?  

1st isn’t clear, 2nd is: use a motion diagram.  
Organize what you have.  
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Example 3.2 Can this be? (cont.) 

© 2015 Pearson Education, Inc.  

Section 3.4: Motion diagrams 

❶ GETTING STARTED  
x axis with: 

 origin at top of building 
 +x pointing down 
 x increases as stone falls 

initial conditions: 
 ti = 0,  xi = 0,  υx,i = 0 

 
OMG. +x is downward? You monster. 
Why would it matter? 
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Example 3.2 Can this be? (cont.) 

© 2015 Pearson Education, Inc.  

Section 3.4: Motion diagrams 

❶ GETTING STARTED  
 
initial time ti and position xi are zero by choice of origin 
 
the x component of the initial velocity is zero 

 assumption based on “dropped” not “thrown” 
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Example 3.2 Can this be? (cont.) 

© 2015 Pearson Education, Inc.  

Section 3.4: Motion diagrams 

❶ GETTING STARTED  
 
Interested in speed just as stone hits.  

 final position = ground 
Distance between the initial and final positions?  

 each floor is about 3 m high, net 300 m high 
 how have you not googled this yet? (381 m) 

Final conditions? 
 tf = ?,  xf = +300 m,  υx,f = ? 
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Example 3.2 Can this be? (cont.) 

© 2015 Pearson Education, Inc.  

Section 3.4: Motion diagrams 

❶ GETTING STARTED  
Between xi = 0 and xf = +300 m, the stone accelerates 
downward because of gravity.  
 
Assume air resistance is negligible (why?) 

 write “ax = +9.8 m/s2” between the initial and 
 final positions. 
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Example 3.2 Can this be? (cont.) 

© 2015 Pearson Education, Inc.  

Section 3.4: Motion diagrams 

❷ DEVISE PLAN  
How fast does it have to be going to travel the length of 
a window in the same time interval it takes to say 
“Watch out! A stone!”  
 
Are we going that fast or not? 
 
Because no values are given, use estimates  
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Example 3.2 Can this be? (cont.) 

© 2015 Pearson Education, Inc.  

Section 3.4: Motion diagrams 

❸ EXECUTE PLAN  
Takes roughly 2 s to say those words  
A window is about 2 m tall.  

As long as the stone is faster than (2 m)/(2 s) = 1 m/s just before 
it hits the ground, it is true 

Acceleration in free fall is about 10 m/s2, so the speed of the stone 
increases by 10 m/s each second.  

It takes way longer than 1 s to fall.  
It is like 1 s from this building 

The statement must be true. ✔ 
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Example 3.2 Can this be? (cont.) 

© 2015 Pearson Education, Inc.  

Section 3.4: Motion diagrams 

❹ EVALUATE RESULT  
Even if I account for some slowing down due to air 
resistance, I know from experience that a stone dropped 
from even a much smaller height travels more than 1 m 
in 1 s just before it reaches the ground.  
 
 
 



Slide 3-52 

Two stones are released from rest at a certain height, 
one 1 s after the other.  
(a) Once the second stone is released, does the 

difference in their speeds increase, decrease, or stay 
the same?  

(b) Does their separation increase, decrease, or stay the 
same?  

(c)  Is the time interval between the instants at which 
they hit the ground less than, equal to, or greater 
than 1 s? (Use x(t) curves to help you visualize this 
problem.) 

© 2015 Pearson Education, Inc.  

Chapter 3: Self-Quiz #1 
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Answer 
(a)  Both stones accelerate at about 10 m/s2, so the 

speeds increase at the same rate, the difference 
in the speeds remains the same.  

(b)  The separation increases because the speed of 
the first stone is always greater. Position goes as 
v times t 

(c)  the second stone always remains 1 s behind, this 
is how time works 

© 2015 Pearson Education, Inc.  

Chapter 3: Self-Quiz #1 
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Which of the graphs in Figure 3.12 depict(s) an object 
that starts from rest at the origin and then speeds up in 
the positive x direction? 

© 2015 Pearson Education, Inc.  

Chapter 3: Self-Quiz #2 
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Answer 

Choice b is the correct answer because its initial 
position is zero and the slope is initially zero but then 
increasing, indicating that the object speeds up.  

© 2015 Pearson Education, Inc.  

Chapter 3: Self-Quiz #2 

slows no accel 
no start at origin 

speeds in –x 
no start at origin 
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Which of the graphs in Figure 3.13 depict(s) an object 
that starts from a positive position with a positive x 
component of velocity and accelerates in the negative x 
direction? 

© 2015 Pearson Education, Inc.  

Chapter 3: Self-Quiz #3 
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Answer 

Choice d. Choice a does not have a positive initial 
position. Choice b represents zero acceleration. Choice 
c represents zero initial velocity. 

© 2015 Pearson Education, Inc.  

Chapter 3: Self-Quiz #3 
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Quantitative Tools 

© 2015 Pearson Education, Inc.  

Chapter 3: Acceleration 
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Section Goals 

You will learn to 
•  Represent motion with constant acceleration using 

motion graphs and mathematics. 
•  Construct self-consistent position-versus-time, 

velocity-versus-time, and acceleration-versus-time 
graphs for specific motion situations. 

© 2015 Pearson Education, Inc.  

Section 3.5: Motion with constant acceleration 
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•  We can write down the definition for the x 
component of average acceleration: 

•  Notice the similarity between this definition and the 
definition of average velocity in chapter 2: 

© 2015 Pearson Education, Inc.  

Section 3.5: Motion with constant acceleration 

  
ax ,av ≡

Δυx

Δt
=
υx ,f −υx ,i

tf − ti

  
υx ,av ≡

Δx
Δt

=
xf − xi

tf − ti



Slide 3-61 

•  Now let us consider the motion 
of an object with constant 
acceleration:  
•  For motion with constant 

acceleration, ax,av = ax and 
vx(t) curve is a straight line.  

•  Rewriting Equation we can 
get the x-component of final 
velocity:  

© 2015 Pearson Education, Inc.  

Section 3.5: Motion with constant acceleration 

  υx ,f =υx ,i + axΔt   (constant acceleration)
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•  displacement is the area under the vx(t) curve. 

•  for an object in motion with constant 
acceleration, the displacement (∆x = xf – xi) in 
time interval (∆t = tf – ti) is given by the area of 
the shaded trapezoid 

•  Setting ti = 0, the object’s final position can be 
written as 
 

•  we can determine the object’s final velocity 

© 2015 Pearson Education, Inc.  

Section 3.5: Motion with constant acceleration 

  xf = xi +υx ,itf +
1
2 axtf

2   (constant acceleration)

  υx ,f =υx ,i + axtf   (constant acceleration)
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•  Since tf is an arbitrary instant in time in the object’s 
motion, we can drop the subscript f and rewrite as 

© 2015 Pearson Education, Inc.  

Section 3.5: Motion with constant acceleration 

  x(t) = xi +υx ,it +
1
2 axt

2   (constant acceleration)

  υx (t) =υx ,i + axt   (constant acceleration)
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•   This is easier with calculus, continuous time 

•   C is v(t=0) or vi 

© 2015 Pearson Education, Inc.  

•  Once more: 

•  C’ is x(t=0) or xi 
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In terms of displacement 
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Section 3.5: Motion with constant acceleration 
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Example 3.4 Collision or not? 

You are bicycling at a steady 6.0 m/s when someone 
suddenly walks into your path 2.5 m ahead. You 
immediately apply the brakes, which slow you down at 
6.0 m/s2. Do you stop in time to avoid a collision? 

© 2015 Pearson Education, Inc.  

Section 3.5: Motion with constant acceleration 
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Example 3.4 Collision or not? (cont.) 

❶ GETTING STARTED  
In order to avoid a collision, you must come to a stop in 
less than 2.5 m.  
 
Need to calculate the distance traveled under the given 
conditions. Is it more or less than 2.5 m? 

© 2015 Pearson Education, Inc.  

Section 3.5: Motion with constant acceleration 
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Example 3.4 Collision or not? (cont.) 

❷ DEVISE PLAN I have equations for displacement, 
but I don’t know the time interval ∆t.  
 
From the definition of acceleration: 
 

 ∆t = (υx,f  – υx,i)/ax 
 
which contains no unknowns on the right side. 

© 2015 Pearson Education, Inc.  

Section 3.5: Motion with constant acceleration 
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∆t 

Example 3.4 Collision or not? (cont.) 

❸ EXECUTE PLAN Substituting the expression for the 
time interval gives the x component of the displacement 
necessary to stop: 

© 2015 Pearson Education, Inc.  

Section 3.5: Motion with constant acceleration 

  
Δx =υx ,i

υx ,f −υx ,i

ax

+ 1
2 ax

υx ,f −υx ,i

ax

⎛

⎝⎜
⎞

⎠⎟

2

=
υ 2

x ,f −υ
2
x ,i

2ax

  (1)

∆t 
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Example 3.4 Collision or not? (cont.) 
❸ EXECUTE PLAN  
With +x along the direction of the motion 

 υx,i = +6.0 m/s 
 υx,f  = 0 
 ax = –6.0 m/s2.  

 
 
 
more than the 2.5 m required. You will totally collide. 

© 2015 Pearson Education, Inc.  

Section 3.5: Motion with constant acceleration 

  
Δx = 0− (+6.0 m/s)2

2(−6.0 m/s2 )
= +3.0 m

✔ 
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•  Notice: rearranging we can find the final velocity of 
an object under constant acceleration over a certain 
displacement (∆x): 

•  advantage: don’t need to know time! 

© 2015 Pearson Education, Inc.  

Section 3.5: Motion with constant acceleration 

  υx ,f
2 =υx ,i

2 + 2axΔx  (constant acceleration)
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Checkpoint 3.10 

  Determine the velocity of the stone dropped from the top 
of the Empire State Building in Example 3.2 just before the stone 
hits the ground. 

3.10  
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initial velocity is zero 
displacement ~ 300 m 
acceleration ~ 10 m/s2 

 
   vx,f ~ 80 m/s 

 
 

  υx ,f
2 =υx ,i

2 + 2axΔx  (constant acceleration)
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Section Goals 

•  Model free-fall motion using the concept of gravity 
and the definitions of velocity and acceleration. 

•  Manipulate the equations for free-fall into a form that 
allows the prediction of the future motion of an object 
from its present state of motion. 

© 2015 Pearson Education, Inc.  

Section 3.6: Free-fall equations 
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•  The magnitude of the acceleration due to gravity is 
designated by the letter g: 

•  Near Earth’s surface g = 9.8 m/s2. 
•  The direction of the acceleration is downward, and 

if we chose a positive axis pointing upward, ax = –g. 
•  If an object is dropped from a certain height with zero 

velocity along an upward-pointing x-axis, then  

© 2015 Pearson Education, Inc.  

Section 3.6: Free-fall equations 

   g ≡ afree fall

  xf = xi −
1
2 gtf

2

  υx ,f = −gtf



Slide 3-77 

Example 3.5 Dropping the ball 

Suppose a ball is dropped from height h = 20 m above 
the ground. How long does it take to hit the ground, and 
what is its velocity just before it hits? 

© 2015 Pearson Education, Inc.  

Section 3.6: Free-fall equations 
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Example 3.5 Dropping a ball (cont.) 
➊ GETTING STARTED  
x axis that points upward  
origin at the initial position of the ball  
 
assumptions:  

 released from rest (vx,i = 0 at ti = 0) 
 ignore air resistance  

 
initial conditions are 

ti = 0, xi = 0, vx,i = 0 

© 2015 Pearson Education, Inc.  
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Example 3.5 Dropping a ball (cont.) 
➊ GETTING STARTED  
final position xf at instant tf is a distance 
h below the initial position 
 
just before impact at instant tf, the final 
conditions are 

tf = ?, xf = –h, vx,f = ? 
 
acceleration is negative, ax = –g. 

© 2015 Pearson Education, Inc.  
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Example 3.5 Dropping a ball (cont.) 

➋ DEVISE PLAN  
Acceleration is constant, so our equations work.  
Gives me two equations & two unknowns: tf and vx,f 

© 2015 Pearson Education, Inc.  
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Example 3.5 Dropping a ball (cont.) 

❸ EXECUTE PLAN Substituting 
the initial and final conditions  
 
 
and so 

© 2015 Pearson Education, Inc.  

Section 3.6: Free-fall equations 

  −h = 0+ 0− 1
2 gtf

2 = − 1
2 gtf

2

  
tf =

2h
g
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Example 3.5 Dropping a ball (cont.) 

❸ EXECUTE PLAN Substituting h = 20 m 
and g = 9.8 m/s2 
 

© 2015 Pearson Education, Inc.  

Section 3.6: Free-fall equations 

  
Δt = tf − ti =

2h
g

− 0 = 2(20 m)
9.8 m/s2 = 4.0 s2 = 2.0 s✔  (1) 
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Example 3.5 Dropping a ball (cont.) 

❸ EXECUTE PLAN  
Because the ball starts from rest: 
 
vx,f = 0 – gtf = –gtf = –(9.8 m/s2)(2.0 s) 
                     = –20 m/s. ✔ 
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Example 3.5 Dropping a ball (cont.) 
➍ EVALUATE RESULT  
Time is reasonable based on everyday experience 
Final velocity ∆x,f = –20 m/s also makes sense:  

•  negative because it points in the negative x direction 
•  if the ball was at a constant speed of 20 m/s, it would cover 

the 20-m distance in 1 s. It moves at that speed only at the 
end of the drop, so it takes longer to fall. 

© 2015 Pearson Education, Inc.  
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Section Goals 

You will learn to 
•  Identify that one-dimensional motion along an incline 

plane can be related to free-fall motion along a  
non-vertical direction. 

•  Establish that purely horizontal and purely vertical 
motion are the special cases of motion along an 
incline plane. 

© 2015 Pearson Education, Inc.  

Section 3.7: Inclined planes 
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•  Galileo used inclined planes to study 
motion of objects that are accelerated due 
to gravity: 
•  He found that when a ball rolls down 

an incline starting at rest, the ratio of 
the distance traveled to the square of 
the amount of time needed to travel 
that distance is constant:  

 
•  Using this and setting xi = 0 and ti = 0 

we can show that this ratio is 
proportional to ax: 
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Section 3.7: Inclined planes 

  

x1

t1
2 =

x2

t2
2 =

x3

t3
2

  

xf

tf
2 = 1

2 ax
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Section 3.7: Inclined planes 

•  Galileo observed that 
•  For each value of the 

angle θ, ax along the 
incline is a constant.  

•  ax along the incline 
increases as θ increases.  

•  Experimentally we can 
determine that the x 
component of the 
acceleration along the 
incline obey the 
relationship 

ax = +g sin θ  
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Inclined planes 

•  establishes gravity is vertical, constant acceleration 

•  it is a vector, and only the vertical component matters 

•  for inclined plane,  the component along the plane is 
ax = +g sin θ  
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Worked Problem 3.5 Inclined track 

Your physics instructor prepares a laboratory exercise in 
which you will use a modern version of Galileo’s 
inclined plane to determine acceleration due to gravity. 
In the experiment, an electronic timer records the time 
interval required for a cart initially at rest to descend 
1.20 m along a low-friction track inclined at some angle 
θ with respect to the horizontal. 

© 2015 Pearson Education, Inc.  
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Worked Problem 3.5 Inclined track (cont.) 

(a) In preparation for the experiment, you must obtain 
an equation from which you can calculate g on the basis 
of these measurements. What is that equation? 
(b) To make it possible to check the students’ 
measurements quickly, the instructor breaks the class 
into five groups and assigns one value of θ to each 
group. If no mistakes are made, these five θ values yield 
time intervals of 0.700, 0.800, 0.900, 1.00, and 1.20 s. 
What are the five θ values? 

© 2015 Pearson Education, Inc.  
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Worked Problem 3.5 Inclined track (cont.) 
❶ GETTING STARTED The cart undergoes constant acceleration, 
from rest, on an inclined plane. We know how to analyze this type of 
motion, and we know how the acceleration at any given incline angle is 
related to the acceleration g due to gravity. We sketch a motion 
diagram, representing a cart moving down an inclined plane, and 
choose the positive x direction as pointing down the track. 

© 2015 Pearson Education, Inc.  
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Worked Problem 3.5 Inclined track (cont.) 

❷ DEVISE PLAN  
•  We could use ax = +g sin θ, but you will not be 

measuring ax values directly.  
•  Measure displacements ∆x and time intervals ∆t 
•  We need an expression that gives acceleration in 

terms of these two variables. Use initial conditions & 
rearrange: 
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Worked Problem 3.5 Inclined track (cont.) 

❸ EXECUTE PLAN   
•  With zero initial velocity, we have 

 ax = 2(xf – xi)/t2 = 2∆x/t2 

•  ti was taken to be zero, the t2 is actually (∆t)2, so  

© 2015 Pearson Education, Inc.  
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ax =

2Δx
(Δt)2
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Worked Problem 3.5 Inclined track (cont.) 

❸ EXECUTE PLAN Substituting this expression for ax  
 
 
 
from which we obtain the expression for g to be used in 
the experiment: 
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2Δx
(Δt)2 = g sinθ

  
g = 2Δx

(Δt)2 sinθ
✔ 
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Worked Problem 3.5 Inclined track (cont.) 
❸ EXECUTE PLAN (b) Manipulation gives 
 
 
 
 
 
•  First calculate the constant quantity 2∆x/g = 0.2449 since we 

need it every time.  
•  Substitution of ∆t = 0.700, 0.800, 0.900, 1.00, and 1.20 s into 

Eq. 2 yields the angles of incline she assigned to the five 
groups:  30.0∘, 22.5∘, 17.6∘, 14.2∘, and 9.79∘. ✔ 
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g sinθ = 2Δx
g(Δt)2

θ = sin−1 2Δx
g(Δt)2

⎛
⎝⎜

⎞
⎠⎟
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Worked Problem 3.5 Inclined track (cont.) 

❹ EVALUATE RESULT The numerical values for the 
angles are reasonable: Larger angles are associated with 
smaller time intervals. Even the shortest interval is 
considerably longer than the time interval needed for an 
object to fall freely from a height of 1.2 m, as expected. 
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Checkpoint 3.13 

 As the angle θ of the incline used to collect the data of Figure 
3.22 is increased beyond 90∘, what happens to the acceleration? Does 
this result make sense (provided you always put the cart on the top side 
of the track)? 

3.13 
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Section Goals 

You will learn to 
•  Generalize the mathematical definition of the average 

acceleration of a moving object to instantaneous 
acceleration by use of a limiting process.  

•  Represent motion with continuous changes in 
velocity using motion graphs and mathematics. 

•  Relate the concept of a tangent line on a  
velocity-versus-time graph with the instantaneous 
acceleration. 

© 2015 Pearson Education, Inc.  

Section 3.8: Instantaneous acceleration 



Slide 3-99 © 2015 Pearson Education, Inc.  

Section 3.8: Instantaneous acceleration 

•  What if acceleration is not 
constant? 
•  The figure shows the  

vx(t) curve for a motion where 
the acceleration is not 
constant.  

•  The instantaneous acceleration 
ax is the slope of the tangent of 
the vx(t) curve at time t: 

 
•  Or  

 
ax =

dυx

dt

  
ax =

dυx

dt
= d

dt
dx
dt

⎛
⎝⎜

⎞
⎠⎟
≡ d 2x

dt2
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•  To find the change in velocity during the time interval (∆t), we can 
use the area under the ax(t) curve in the figure.  

•  Although, acceleration is not constant, we can divide motion into 
small intervals of ∆t in which it is constant.  

•  In the limit ∆t ⟶ 0, we can find 
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Section 3.8: Instantaneous acceleration 

  
Δυx = ax (t)dt

ti

tf∫
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Section 3.8: Instantaneous acceleration 

•  Once we know the 
velocity, we can use the 
same approach to 
obtain displacement: 

  
Δx = υx (t)dt

ti

tf∫
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Substitute 3.11 
Clicker Question 11 
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Exercise 3.7 Using calculus to determine 
displacement 

•  Suppose an object initially at xi at ti = 0 has a constant 
acceleration whose x component is ax. Use calculus to 
show that the x component of the velocity and the x 
coordinate at some final instant tf are given by Eqs. 
3.10 and Eq. 3.9, respectively. 

© 2015 Pearson Education, Inc.  
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Exercise 3.7 Using calculus to determine 
displacement (cont.) 

SOLUTION Because the acceleration is constant, I can 
pull ax out of the integration in Eq. 3.27: 

Substituting ti = 0 and rearranging terms, I obtain Eq. 3.10: 
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Δυx =υx ,f −υx ,i = axdt = ax dt =

ti

tf∫ti

tf∫  ax (tf − ti )

  υx ,f =υx ,i + axtf ✔ 
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Exercise 3.7 Using calculus to determine 
displacement (cont.) 

SOLUTION For an arbitrary final instant t, I can drop the subscript 
f. Substituting this expression into Eq. 3.28, I get 
 

or, pulling constant terms out of the integration and then carrying 
out the integration, 
 
 
which yields Eq. 3.9: 
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Δx = (υx ,i + axt)dt

ti

tf∫

  
Δx = xf − xi =υx ,i dt + axti

tf∫ t dt
ti

tf∫ =υx ,itf + ax
1
2 t2⎡⎣ ⎤⎦ti

tf

✔   xf = xi +υx ,itf +
1
2 axtf

2
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Checkpoint 3.14 

 Take the first and second time derivatives of xf in Eq. 3.9. 
What do you notice? 

3.14 

  xf = xi +υx ,itf +
1
2 axtf

2   (constant acceleration)
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Concepts: Accelerated motion 

•  If the velocity of an object is changing, the object is 
accelerating. The x component of an object’s 
average acceleration is the change in the x 
component of its velocity divided by the time interval 
during which this change takes place. 

•  The x component of the object’s instantaneous 
acceleration is the x component of its acceleration at 
any given instant. 

•  A motion diagram shows the positions of a moving 
object at equally spaced time intervals. 
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Quantitative Tools: Accelerated motion 

•  The x component of the average acceleration is 

•  The x component of the instantaneous acceleration is 

•  The x component of the change in velocity over a time interval is 
given by 

•  The x component of the displacement over a time interval is given 
by 
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Chapter 3: Summary 

  
ax ,av ≡

Δυx

Δt
=
υx ,f −υx ,i

tf − ti

  
ax ≡

dυx

dt
= d 2x

dt2

  
Δυx = ax (t)dt

ti

tf∫

  
Δx = υx (t)dt

ti

tf∫
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Concepts: Motion with constant acceleration 

•  If an object has constant acceleration, the x(t) curve 
is a straight line that has a nonzero slope and the ax(t) 
curve is a horizontal line. 
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Chapter 3: Summary 
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Quantitative Tools: Motion with constant 
acceleration 

•  If an object moves in the x direction with constant acceleration 
ax starting at t = 0, with initial velocity x,i at initial position 
xi, its x coordinate at any instant t is given by 

•  The x component of its instantaneous velocity is given by 

•  And the x component of its final velocity is given by 
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Chapter 3: Summary 

  x(t) = xi +υx ,it +
1
2 axt

2

  υx (t) =υx ,i + axt

  υ
2
x ,f =υ

2
x ,i + 2axΔx
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Concepts: Free fall and projectile motion 

•  An object subject only to gravity is in free fall. All 
objects in free fall near the surface of Earth have the 
same acceleration, which is directed downward. We 
call this acceleration the acceleration due to gravity 
and denote its magnitude by the letter g. 

•  An object that is launched but not self-propelled is in 
projectile motion. Once it is launched, it is in free 
fall. The it follows is called its trajectory. 
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Chapter 3: Summary 
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Quantitative Tools: Free fall and projectile 
motion 

•  The magnitude g of the downward acceleration due to 
gravity is 
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Chapter 3: Summary 

   g = afree fall = 9.8 m/s2  (near Earth's surface)
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Concepts: Motion along an inclined plane 

•  An object moving up or down an inclined plane on 
which friction is negligible has a constant 
acceleration that is directed parallel to the surface of 
the plane and points downward along the surface. 
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Quantitative Tools: Free fall and projectile 
motion 

•  When friction is negligible, the x component of 
acceleration ax for an object moving on an inclined 
plane that rises at an angle θ above the horizontal is 

ax = +g sin θ 
when the x axis is directed downward along the 
plane. 
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