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• Lab this week: there will be time for questions …
• Final exam: sections posted today; some left out
• Final format: all multiple choice, almost all short 

problems, ~25-30 questions
• Formula sheet: will post this week

• Yes, you should do PackBack this week
• Expecting 42 in total
• Grade = percent of 42 that you finish.

• Concept test: max 1% to overall grade. 

© 2015 Pearson Education, Inc.

The plan
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Concepts
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Chapter 13 Gravity



Slide 13-4© 2015 Pearson Education, Inc.

Section 13.1: Universal gravity

• Astronomical observations 
show that the Moon revolves 
around Earth and that Earth 
and other planets revolve 
around the Sun in roughly 
circular orbits and at roughly 
constant speeds.

• As we saw in Chapter 11, 
any object that is in circular 
motion requires some force 
to supply a centripetal 
acceleration.

• The force must be central –
toward the center of the orbit
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• In the late 17th century, Isaac Newton posited that the 
gravitation force is a universal attractive force between all 
objects in the universe. 
• The force that holds celestial bodies in orbit is the 

gravitational force. 
• This is the same force that causes objects near Earth’s 

surface to fall. 

© 2015 Pearson Education, Inc.

Section 13.1: Universal gravity
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• Newton further postulated:
1. The effect of the gravitational force weakens with 

distance:
• A uniform solid sphere exerts a gravitational force 

outside the sphere with a 1/r2 depends as if all the matter 
in the sphere were concentrated at its center. 

© 2015 Pearson Education, Inc.

Section 13.1: Universal gravity
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If the force of gravity decreases with the inverse square of 
the distance, why were we allowed, in all our earlier work on the 
gravitational force, to say that an object sitting on the ground, an 
object sitting in a tree 10 m above the ground, and an object flying 
at an altitude of 10 km all experience the same 9.8-m/s2 acceleration 
due to gravity?

These distances are tiny compared to the earth’s radius, ~6400 km

The relevant distance for a sphere is to its center, since we can treat 
it as though all mass is concentrated there.

© 2015 Pearson Education, Inc.

Checkpoint 13.2

13.2
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• Newton further postulated: 
2. The strength of the gravitational force on an object is 

proportional to the quantity of material in it, a 
quantity called the mass of the object:
• In everyday situations we can say:

• The mass of an object is equal to the object’s 
inertia.

• Relativity: this equality breaks down for motion at very 
high speeds. 

• We can denote both quantities by the same symbol m and 
express each in kilograms. 

© 2015 Pearson Education, Inc.

Section 13.1: Universal gravity



Slide 13-9

• Combining these conclusions, we can write Newton’s 
law of gravity for two objects of mass m1 and m2
separated by a distance r:

FG
21 = FG

12∝ m1m2 /r2

Why m1m2 ?
doubling either mass should double the force

Why 1/r2 ?
interaction spreads out over surface of a sphere
(like waves)

Other laws possible, but not consistent with observations
© 2015 Pearson Education, Inc.

Section 13.1: Universal gravity
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Section 13.1: Universal gravity

• Evidence for the 1/r2

dependence of the 
gravitational force is 
provided by the following 
observed relationship 
between the radii R and the 
period T of planetary orbits:
• The square of the 

period of a planetary 
orbit is proportional to 
the cube of the orbit’s 
radius. 
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• The 1/r2 dependence also explains the shape of the planetary 
orbits.

• Using conservation of energy and momentum, we can show 
that the orbit of a body moving under the influence of gravity 
must be an ellipse, a circle, a parabola, or a hyperbola. 

© 2015 Pearson Education, Inc.

Section 13.1: Universal gravity
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Example13.1 Comparing gravitational pulls

© 2015 Pearson Education, Inc.

Section 13.1: Universal gravity

Compare the gravitational force exerted by Earth on you 
with (a) that exerted by a person standing 1 m away 
from you and (b) that exerted by Earth on Pluto.
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Example13.1 Comparing gravitational pulls 
(cont.)

❶ GETTING STARTED Although I don’t know yet 
how to calculate a numerical value for the gravitational 
force, I know that the gravitational force between two 
objects with masses m1 and m2 separated by a distance r
is proportional to the factor m1m2/r2. 

To compare gravitational forces, I should therefore 
compare these factors for each given situation.

© 2015 Pearson Education, Inc.

Section 13.1: Universal gravity



Slide 13-14

Example13.1 Comparing gravitational pulls 
(cont.)

❷ DEVISE PLAN My mass is about 70 kg, and I can 
get the masses of Earth and Pluto from Google. When I 
stand on the surface of Earth, the distance between me 
and the center of the planet is its radius, which I can also 
Google. 
To do part b, I need to know the distance between Pluto 
and Earth. Planetary orbits are very nearly circular, 
however, so I can consider the semimajor axis a to be the 
radius of each (nearly) circular orbit, and … Google.

© 2015 Pearson Education, Inc.

Section 13.1: Universal gravity
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Example13.1 Comparing gravitational pulls 
(cont.)

❷ DEVISE PLAN Goole shows that the “radius” of 
Pluto’s orbit is about 40 times greater than that of 
Earth’s orbit, and so I make only a small error by taking 
the Sun-Pluto distance as a measure of the (average) 
Earth-Pluto distance. 

Armed with this information, I’ll calculate the factor 
m1m2/r2 first for Earth and me, then for the two 
situations described in the two parts of this problem.

© 2015 Pearson Education, Inc.

Section 13.1: Universal gravity
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Example13.1 Comparing gravitational pulls 
(cont.)

❸ EXECUTE PLAN When I stand on the surface of 
Earth, r = RE, and so the factor m1m2/r2 is

© 2015 Pearson Education, Inc.

Section 13.1: Universal gravity

  

m1mE

R2
E

= (70 kg)(5.97 ×  1024  kg)
(6.38 ×  106m)2 = 1.0 ×  1013  kg2 / m2.
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Example13.1 Comparing gravitational pulls 
(cont.)

❸ EXECUTE PLAN (a) For two 70-kg people 
separated by 1 m, I get

Thus the gravitational force exerted by a person 
standing 1 m from me is (4.9 x 103 kg2/m2)/(1.0 x 1013

kg2/m2) = 4.9 x 10–10 times the gravitational force 
exerted by Earth on me.✔

© 2015 Pearson Education, Inc.

Section 13.1: Universal gravity

  

m1m2

r 2
12

= (70 kg)2

(1 m)2 = 4.9 ×  103  kg2 / m2.
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Example13.1 Comparing gravitational pulls 
(cont.)

❸ EXECUTE PLAN (b) For Earth and Pluto, I have

= 2.3 x 1021 kg2/m2.

This is (2.3 x 1021 kg2/m2)/(1.0 x 1013 kg2/m2) = 2.3 x 108

times greater than the attraction between Earth and me.✔
© 2015 Pearson Education, Inc.

Section 13.1: Universal gravity

  

mEmp

r 2
EP

= (5.97 ×  1024  kg)(1.36 ×  1022  kg)
(5.9 ×  1012m)2
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Example13.1 Comparing gravitational pulls 
(cont.)
❹ EVALUATE RESULT That the gravitational force exerted by 
another person on me is more than a billion times smaller than that 
exerted by Earth on me makes sense: Only the gravitational 
attraction between Earth and objects on Earth is noticeable. 

That the gravitational force exerted by Earth on Pluto is 200,000,000 
times greater than that exerted by Earth on me, even though Pluto is 
1,000,000 times farther from Earth’s center than I am, is amazing. Of 
course, Pluto’s mass is about 1020 times greater than mine, and that 
factor more than makes up for the large difference between the 
Earth-me distance and the Earth-Pluto distance.

© 2015 Pearson Education, Inc.

Section 13.1: Universal gravity
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How about you and the nearest star?

• Alpha Centari: 
• similar to solar mass, 2.19 x 1030 kg
• Distance: 4.13 x 1016 m

• Exerts a force on you of mM/R2 ~ 0.1
• Over 50,000 times weaker than the person sitting next 

to you. 
• This is relevant for astrology

© 2015 Pearson Education, Inc.

Section 13.1 Universal Gravity
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Section Goals

© 2015 Pearson Education, Inc.

Section 13.2: Gravity and angular momentum

You will learn to
• Predict some consequences of the conservation of 

angular momentum for gravitationally interacting 
systems.

• Apply Kepler’s laws to celestial objects. 
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Section 13.2: Gravity and angular momentum

• The force of gravity is a 
central force (see figure):
• The line of action of a 

central force lies along a 
straight line that connects 
the two interacting objects. 

• In an isolated system of two 
objects interacting through a 
central force, each object has 
a constant angular 
momentum about the center 
of mass. 
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Section 13.2: Gravity and angular momentum

• As illustrated in the 
figure, we can show that
• The angular 

momentum of a 
particle about an 
origin is proportional 
to the rate at which 
area is swept out by 
the particle’s vector 
position. 

dA

dt
=

1

2
|~r⇥~v| =

1

2
rv? =

L

2m
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• The figure shows three types of motion with constant 
angular momentum. 

© 2015 Pearson Education, Inc.

Section 13.2: Gravity and angular momentum
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Kepler’s laws of planetary motion

© 2015 Pearson Education, Inc.

Section 13.2: Gravity and angular momentum

Kepler’s first law describes the shape of the planetary 
orbits: 

All planets move in elliptical orbits with the Sun 
at one focus. 

Although the deviation from circular orbits is small, this 
statement was a radical departure from the accepted 
wisdom, dating back to Plato, that the planets, being 
heavenly bodies, were perfect and therefore could move 
in only perfect circles or combinations of circles.

Elliptical orbits follows from F~1/r2
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Kepler’s laws of planetary motion

© 2015 Pearson Education, Inc.

Section 13.2: Gravity and angular momentum

Kepler’s second law reveals that, even if planets are 
not in circular motion at constant speed, their motions 
obey the following requirement:

The straight line from any planet to the Sun 
sweeps out equal areas in equal time intervals.

• Follows from the fact that gravity is a central force  -
geometry!

• Can also say this follows from conservation of L.
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Kepler’s laws of planetary motion 

© 2015 Pearson Education, Inc.

Section 13.2: Gravity and angular momentum

Kepler’s third law relates the planetary orbits to one 
another: 

The squares of the periods of the planets are 
proportional to the cubes of the semimajor axes 
of their orbits around the Sun. 

Kepler discovered this third law by painstakingly 
examining, over a period of many years, countless 
combinations of planetary data. Follows from F~1/r2
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Kepler’s laws of planetary motion

© 2015 Pearson Education, Inc.

Section 13.2: Gravity and angular momentum

In keeping with Aristotelian notions, Kepler believed 
that a force was necessary to drive the planets along 
their orbits, not to keep them in orbit. Consequently, 
Kepler was unable to provide a correct explanation for 
these three laws. It was not until Newton that the single 
unifying reason for these laws was established. 

Kepler’s three laws follow directly from the law of 
gravity: The 1st and 3rd laws are a consequence of the 
1/r2 dependence, and the 2nd law reflects the central 
nature of the gravitational force.
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Which has greater acceleration in its orbit around 
Earth, the Moon or the International Space Station?

1. Both have the same acceleration
2. The Moon
3. The International Space Station

© 2015 Pearson Education, Inc.

Section 13.2
Question 2
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Which has greater acceleration in its orbit around 
Earth, the Moon or the International Space Station?

1. Both have the same acceleration
2. The Moon
3. The International Space Station – a=F/m ~ Me/r2, 

ISS has smaller orbital radius

© 2015 Pearson Education, Inc.

Section 13.2
Question 2
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The space shuttle (use to) orbit Earth at an altitude of 
about 300 km. 
(a) By what factor is the shuttle’s distance to the center of Earth 

increased over that of an object on the ground? 
(b) The gravitational force exerted by Earth on an object in the 

orbiting shuttle is how much smaller than the gravitational 
force exerted by Earth on the same object when it is sitting on 
the ground? 

(c) What is the acceleration due to gravity at an altitude of about 
300 km? 

(d) While in orbit, the shuttle’s engines are off. Why doesn’t the 
shuttle fall to Earth?

© 2015 Pearson Education, Inc.

Checkpoint 13.7

13.7
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By what factor is the shuttle’s distance to the center of 
Earth increased over that of an object on the ground? 

• The radius of the earth is about 6400 km, so the 
distance to earth’s center is increased by 
• (6400 + 300)/(6400) ~ 1.05

• Seriously: giant rockets only get us 5% further away 
from Earth’s surface. The next 5% is easier though …

© 2015 Pearson Education, Inc.

Checkpoint 13.7
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What is the acceleration due to gravity at an altitude of 
about 300 km? 

• Since the force goes as 1/r2, it decreases by a factor of 
1/(1.05)2 ~ 0.91

• This gives a ~ (0.91)(9.8 m/s2) ~ 8.9 m/s2

© 2015 Pearson Education, Inc.

Checkpoint 13.7
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While in orbit, the shuttle’s engines are off. Why 
doesn’t the shuttle fall to Earth?

• The shuttle travels at such a high speed that the 
gravitational force exerted by earth is just enough to 
provide centripetal acceleration, g = v2/r (with r the 
distance from the shuttle to earth’s center)

• Basically, it is falling, it just never manages to hit the 
earth …

• "There is an art to flying, or rather a knack. Its knack lies in learning to throw yourself at the 
ground and miss. ... Clearly, it is this second part, the missing, that presents the difficulties."

© 2015 Pearson Education, Inc.

Checkpoint 13.7
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Section 13.3: Weight

• The figure illustrates the 
use of a balance to weigh 
an object:
• An object whose mass 

(mb) is to be determined 
is compared to a known 
mass (mk). 

• As the free-body 
diagrams show, when 
the balance is in 
equilibrium, we obtain 
mb = mk on the Moon 
just as we do on Earth.
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Section 13.3: Weight

• Another type of weighing 
device is the spring scale:
• As illustrated by the 

figure, the spring scale 
tells us that the object 
weighs less on the Moon 
than on Earth. 

• The difference between 
the balance and the spring 
scale arises because

• A spring scale measures the 
downward force exerted on 
it by its load, but a balance 
compares gravitational 
forces and measures mass.
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Section 13.3: Weight

• The reading on the 
spring scale depends 
not only on the 
gravitational pull but 
also on the acceleration 
of the scale.

• As illustrated by the 
free-body diagrams, a 
spring scale in a 
downward-accelerating 
elevator gives a smaller 
scale reading.
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Section 13.3: Weight

• If the elevator has a 
downward acceleration 
of a = g (in free fall) 
then the spring scale 
reading is zero:
• Any object in free 

fall—that is, any 
object subject to 
only a force of 
gravity—
experiences 
weightlessness.
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(a) How far wouldthe space shuttle in Figure 13.20,
300 km above Earth, fall in 1.0 s? (b) If the radius of Earth is 
6400 km, what would the shuttle’s speed be?

© 2015 Pearson Education, Inc.

Checkpoint 13.11

13.11
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• We already found a ~ 8.9 m/s2 at this altitude. The 
vertical distance h it falls in 1.0 s is

h = ½at2 ~ 4.5 m

• If the shuttle remains 300 km above the earth it is in a 
circular orbit, so the acceleration is known: a = v2/r

• Since in free fall a = g, we know v2/r = g, or
v2 = gr, giving v ~ 7.5 x 103 m/s

© 2015 Pearson Education, Inc.

Checkpoint 13.11
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You stand on a spring scale placed on the ground and 
read your weight from the dial. You then take the 
scale into an elevator. Does the dial reading increase, 
decrease, or stay the same when the elevator 
accelerates downward as it moves upward?

1. Increase
2. Decrease
3. Stay the same

© 2015 Pearson Education, Inc.

Section 13.3
Question 3
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You stand on a spring scale placed on the ground and 
read your weight from the dial. You then take the 
scale into an elevator. Does the dial reading increase, 
decrease, or stay the same when the elevator 
accelerates downward as it moves upward?

1. Increase
2. Decrease – free body diagram: Fs – mg = -ma

so Fs = mg – ma
3. Stay the same

© 2015 Pearson Education, Inc.

Section 13.3
Question 3
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Section 13.4: Principle of equivalence

Section Goals
You will learn to
• Articulate the physical 

evidence for the 
principle of 
equivalence.

• Predict some 
consequences of the 
principle of 
equivalence for matter 
and light.
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Section 13.4: Principle of equivalence

• Consider the experiment 
illustrated in the figure. We 
can conclude that
• One cannot distinguish 

locally between the 
effects of a constant 
gravitational 
acceleration of 
magnitude g and the 
effect of an acceleration 
of a reference frame of 
magnitude g. 

• This statement is called the 
principle of equivalence. 
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• Our inability to distinguish between gravity and 
acceleration is exploited in aircraft simulators and 
motion simulators at amusement parks.

© 2015 Pearson Education, Inc.

Section 13.4: Principle of equivalence



Slide 13-46© 2015 Pearson Education, Inc.

Section 13.4: Principle of equivalence

• The figure shows a light pulse 
entering the accelerating elevator.
• Light pulse travels in a 

straight line in the Earth’s 
reference frame.

• Viewed from inside the 
elevator, the light pulse travels 
along a curved path. 

• This effect is purely 
kinematic, and, given the 
principle of equivalence, the 
bending should also occur if 
the elevator was resting on a 
large mass.
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Light travels at approximately 3.0 x 108 m/s. 

(a) How long does it take for a light pulse to cross an elevator 2.0 
m wide? 

(b) How great an acceleration is necessary to make the pulse 
deviate from a straight-line path by 1.0 mm? Is it likely that 
this effect can be observed? 

(c) If light is bent by the gravitational pull of an object, light 
should “fall” when traveling parallel to the surface of Earth. 
How far does a beam of light travel in 0.0010 s, and how 
much does it fall over that distance? Is it likely that this effect 
can be observed?

© 2015 Pearson Education, Inc.

Checkpoint 13.15

13.15
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• How long does it take for a light pulse to cross an 
elevator x = 2.0 m wide? 
• The time is t = x/v ~ 6.7 x 10-9 s

• How great an acceleration is necessary to make the 
pulse deviate from a straight-line path by y =1.0 mm? 
Is it likely that this effect can be observed? 
• y = ½ayt2 = ½ay(x/v)2 or  ay = 2v2y/ax2

• For y = 1 mm, need ay = 4.5 x 1013 m/s2

• Not going to happen.

© 2015 Pearson Education, Inc.

Checkpoint 13.15
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• If light is bent by the gravitational pull of an object, 
light should “fall” when traveling parallel to the 
surface of Earth. How far does a beam of light travel 
in 0.0010 s, and how much does it fall over that 
distance? Is it likely that this effect can be observed?

• In t = 0.0010 s, a light beam travels vt ~ 3 x 105 m
• In that time, it falls like an object in free fall, so

• y = ½gt2 ~ 4.9 x 10-6 m
• Measuring this tiny displacement over a 300 km 

distance is beyond current measurement accuracy
© 2015 Pearson Education, Inc.

Checkpoint 13.15
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If the speed of a planet in its orbit around the Sun 
changes, how can the planet’s angular momentum be 
constant?

© 2015 Pearson Education, Inc.

Chapter 13: Self-Quiz #3
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Answer
If the angular momentum is constant but the speed 
changes, the rotational inertia must change. 

When a planet’s speed increases, either its inertia must 
decrease or it must move nearer the object it orbits to 
keep the angular momentum constant. 

Conversely, when a planet’s speed decreases, either its 
inertia must increase or it must move away from the 
object it orbits.

© 2015 Pearson Education, Inc.

Chapter 13: Self-Quiz #3
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A brick of unknown mass is placed on a spring scale. 
When in equilibrium, the scale reads 13.2 N. Which of 
the following statements is/are true? 

(i) Earth always exerts a gravitational force of 13.2 N 
on the brick.

(ii) The normal force the scale exerts on the brick is 
13.2 N.

(iii) The brick has an inertia of 1.32 kg.

© 2015 Pearson Education, Inc.

Chapter 13: Self-Quiz #4
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Answer
Only statement (ii) is strictly true. 

The scale reading may change from location to location, 
and the inertia of the brick is 1.32 kg only when the 
gravitational acceleration at the specific location is 10 m/s2.

© 2015 Pearson Education, Inc.

Chapter 13: Self-Quiz #4
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If you were to travel in a vertical circle, at what point in 
the circle would you be most likely to experience 
weightlessness?

© 2015 Pearson Education, Inc.

Chapter 13: Self-Quiz #6
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Answer
To experience weightlessness, the only force acting on 
you is the gravitational force exerted by Earth, which 
points downward. 

This downward force must provide the centripetal 
acceleration needed for traveling in a circle.

The only position from which the center of the circle is 
downward from you is at the top of the circle.

© 2015 Pearson Education, Inc.

Chapter 13: Self-Quiz #6
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Quantitative Tools

© 2015 Pearson Education, Inc.

Chapter 13: Gravity
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Section Goals
You will learn to
• Relate the gravitational constant to the acceleration of gravity near 

Earth’s surface.
• Describe the Cavendish experiment for determining the gravitational 

constant.

© 2015 Pearson Education, Inc.

Section 13.5: Gravitational constant
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Section 13.5: Gravitational constant

• Using Newton’s law of gravity, 
we can write the magnitude of 
the gravitational force as

where the proportionality 
constant G is called the 
gravitational constant.
• The magnitude of G was 

experimentally measured 
by Henry Cavendish in 
1798 to be

G = 6.6738 x 10–11 N-m2/kg2

  
F12

G = G
m1m2

r12
2
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• Now let us consider an object with mass mo close to Earth’s 
surface. If Earth’s mass is mE, then we can write

• For an object near Earth’s surface, rEo ~ RE, and the previous 
equation becomes

• However, we know from our study of gravitational force that
and we get

• Can now calculate “g” on other planets
© 2015 Pearson Education, Inc.

Section 13.5: Gravitational constant

  
FEo

G = G
mEmo

rEo
2

  
FEo

G =
GmEmo

rEo
2 ≈ G

mEmo

RE
2 = mo

GmE

RE
2

⎛

⎝⎜
⎞

⎠⎟
(near Earth’s surface)

  Fmo
G = mg,

  
g =

GmE

RE
2 (near Earth’s surface)
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Checkpoint 13.17

For an object released from a height h ~ RE above the 
ground, does the acceleration due to gravity decrease, increase, or 
stay the same as the object falls to Earth?

It increases because the gravitational force increases with 
decreasing distance. This effect is not noticeable at everyday 
distances, but it is measureable.

13.17
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Example 13.3 Weighing Earth
Cavendish is said to have “weighed Earth” because his 
determination of G provided the first value for the 
planet’s mass mE. Given that the radius of Earth is about 
6400 km and given the value of G in Eq. 13.5, 
determine mE.

© 2015 Pearson Education, Inc.

Section 13.5: Gravitational constant
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Example 13.3 Weighing Earth (cont.)
❶ GETTING STARTED I am given Earth’s radius and 
G and must use these values to determine Earth’s mass. 
An expression containing G and the acceleration due to 
gravity g seems a good place to begin.

© 2015 Pearson Education, Inc.

Section 13.5: Gravitational constant
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Example 13.3 Weighing Earth (cont.)
❷ DEVISE PLAN Equation 13.4 gives the acceleration 
due to gravity near Earth’s surface, g, in terms of G, RE, 
and mE. Knowing the values of g, G, and RE, I can 
determine mE.

© 2015 Pearson Education, Inc.

Section 13.5: Gravitational constant
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Example 13.3 Weighing Earth (cont.)
❸ EXECUTE PLAN From Eq. 13.4, I obtain

so

© 2015 Pearson Education, Inc.

Section 13.5: Gravitational constant

  mE = gRE
2 /G,

  
mE = (9.8 m/s2 )(6.4 × 106 m)2

(6.6738 × 10−11N ⋅m2 /kg2 )
= 6.0 × 1024 kg.✔
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Example 13.3 Weighing Earth (cont.)
❹ EVALUATE RESULT Table 13.1 gives 5.97 x 1024

kg, which agrees with my answer to within less than 
1%.

© 2015 Pearson Education, Inc.

Section 13.5: Gravitational constant
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Section Goals
You will learn to
• Derive the expression for gravitational potential 

energy from the law of universal gravity.
• Represent gravitational potential energy on bar charts 

and graphs.
• Relate the path independence of the work done by 

gravity to the non-dissipative nature of the 
gravitational force.

© 2015 Pearson Education, Inc.

Section 13.6: Gravitational potential energy
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• Consider the gravitational 
force exerted on an object 2
of mass m2 by object 1 of 
mass m1, as shown. 
We can write

• The work done by object 1 on object 2 can be written as

• Combining the two equations, we get the work done by the 
gravitational force exerted by object 1 on the system consisting of 
object 2 only:

© 2015 Pearson Education, Inc.

Section 13.6: Gravitational potential energy

  
F12x

G = −G
m1m2

x2

  
W = Fx (x)dx

xi

xf∫

  
W = −Gm1m2

1
x2

⎛
⎝⎜

⎞
⎠⎟

dx = Gm1m2

1
x

⎡

⎣
⎢

⎤

⎦
⎥xi

xf∫
xi

xf

= Gm1m2

1
xf

− 1
xi

⎛

⎝⎜
⎞

⎠⎟
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• Because no other energy associated with the system 
changes, energy conservation gives us, ΔK = W, as 
illustrated in the figure.

© 2015 Pearson Education, Inc.

Section 13.6: Gravitational potential energy
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• Now if we consider the closed 
system of the two interacting 
objects (now no external forces), 
then energy conservation gives 
us, ΔUG = –ΔK.

• Because ΔK does not depend 
on the choice of system we get

• If we let object 2 move from 
x = ∞ (no interaction) to an arbitrary position x, we get

• So the gravitational potential energy is

where is U zero?© 2015 Pearson Education, Inc.
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ΔU G = Gm1m2

1
xi

− 1
xf

⎛

⎝⎜
⎞

⎠⎟

  
ΔU G =U G (x)−U G (∞) =U G (x)− 0 = Gm1m2 0− 1

x
⎛
⎝⎜

⎞
⎠⎟

  
U G (x) = −G

m1m2

x
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Section 13.6: Gravitational potential energy

• Because the force of gravity is a 
central force, we can generalize 
Equation 13.11 to more than one 
dimension:

• The work done by gravitational force 
depends only on the positions of the 
endpoints relative to m1, not on the 
path taken. 

• This means the force is conservative, 
and it is valid to assign UG

   
U G (r ) = −G

m1m2

r
(zero at infinite r)
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Section 13.6: Gravitational potential energy

• Consider the paths 1 and 2 from P to Q, as 
shown. We can write

WP→Q, path 1 = WP→ Q, path 2

• We also know that

WQ←P, path 2 = –WP→ Q, path 2

• So, if an object moves from P to Q along 
path 1 and back to P along path 2, we 
have

W = WP→ Q, path 1 + WQ← P, path 2 = WP→ Q, 

path 2 + (–WP→ Q, path 2) = 0

• For a closed path, work done by gravity 
on an object is zero.
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Section Goal
You will learn to
• Relate the geometry of the orbits of celestial objects 

to the energetics of the situation.

© 2015 Pearson Education, Inc.
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• Consider a system consisting of two objects (star and a satellite 
as shown in figure) with masses M and m, where M >> m. We 
can consider the center of mass of the system to be fixed at the 
center of the large object.

• If the system is closed and isolated

© 2015 Pearson Education, Inc.
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   ΔE = 0 and Δ

L =

0
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• Because the satellite is in motion

• Because the force of gravity is central, we can 
write for the satellite

L = r⊥mv

© 2015 Pearson Education, Inc.
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E = K +U G = 1

2 mυ 2 − GMm
r
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Section 13.7: Celestial mechanics

• Emech = UG + K of a star-satellite system 
can be negative.

• Since K > 0, for systems where Emech < 0, 
we must have r < rmax. rmax is the 
maximum separation distance, given by

(all PE)

• In other words, if Emech < 0, the 
satellite is bound to the star within rmax

• If Emech ≥ 0, r can take any value, 
and the satellite is unbound. 

  
− GMm

rmax

= Emech

  
rmax =

GMm
−Emech
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Conic Sections
Second-degree equations in two variables of the form

Ax2 + Bxy + Cy2 + Dx + Ey + F = 0 

are called conic sections because the curves they represent can be 
obtained by intersecting a plane and a circular cone (Figure 13.35). 
These curves can also be written in the form

where a is the semimajor axis (see Figure 13.7) of the section and 
e is the eccentricity.

© 2015 Pearson Education, Inc.
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x2

a2 +
y2

a2(1− e2 )
= 1
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Conic Sections

© 2015 Pearson Education, Inc.
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Conic Sections
Ellipse: For 0 ≤ e < 1, we obtain an ellipse with a 
semimajor axis a and a semiminor axis b with b2 = 
a2(1 – e2), where e is the eccentricity of the ellipse. 

For each point on the ellipse, the sum of the distances to 
the two foci at (±ae, 0) is equal to 2a. A special type of 
ellipse is obtained for e = 0: The two foci coincide, and 
the ellipse becomes a circle of radius a.

© 2015 Pearson Education, Inc.
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Conic Sections
Hyperbola: When e > 1, the term that contains y2

becomes negative, and Eq. 1 yields the two branches of a 
hyperbola with foci at (±ae, 0) and oblique asymptotes
y = ±(b/a)x, with b2 = a2(e2 – 1). For each point on the 
hyperbola, the difference of the distances to the foci is 
equal to 2a.
The limiting case between an ellipse and a hyperbola, 
which occurs when e = 1, yields a parabola of the form 
y2 = 4px. The parabola can be thought of as an elongated 
ellipse with one focus at (p, 0) and the other at (∞, 0).

© 2015 Pearson Education, Inc.
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• The value of Emech determines the shape of the orbits 
of the satellite: 
• Emech < 0: elliptical orbit (bound)

• Magnitude of gravitational PE larger than max KE

• Emech = 0: parabolic orbit (unbound)
• Magnitude of gravitational PE equal to max KE

• Emech > 0: hyperbolic orbit (unbound)
• KE larger than max magnitude of gravitational PE

© 2015 Pearson Education, Inc.
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Checkpoint 13.21

Consider a planet of mass m moving at constant speed v
in a circular orbit of radius R under the influence of the 
gravitational attraction of a star of mass M. 

(a) What is the planet’s kinetic energy, in terms of m, M, G, and 
R? 

(b) What is the energy of the star-planet system? 

13.21
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• If the trajectory is circular with radius R and constant 
speed v, the gravitational force must provide 
centripetal force:

• To get KE, multiply both sides by ½R

© 2015 Pearson Education, Inc.
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1

2

GMm

R
=

1

2
mv2

GMm

R2
= m

v2

R
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• The mechanical energy is the sum of kinetic and 
potential

• Note this is the negative of KE! Total energy is half 
the magnitude of the potential energy for a circular 
orbit.

• Energy is negative, indicating this is a bound state

© 2015 Pearson Education, Inc.

Checkpoint 13.21

E = K+U =
1

2

GMm

R
-

GMm

R
= -

1

2

GMm

R
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• The figure shows five orbits with the same fixed 
energy Emech but different values of L.

© 2015 Pearson Education, Inc.
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• The figure shows the orbit of an object launched multiple times 
from a fixed location that is a distance ri from Earth’s center. 

• If vi exceeds vesc, such that Emech > 0, then the satellite is unbound. 
vesc is the object’s escape velocity given by
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Emech =

1
2 mυ 2

esc −
GmmE

ri

= 0
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Checkpoint 13.22

(a) Determine an expression for the escape speed at 
Earth’s surface. (b) What is the value of this escape speed? (c) 
Does it matter in which direction an object is fired at the escape 
speed?

At earth’s surface, r = RE, and we have

Using known values, around 1.12 x 104 m/s
Direction doesn’t matter, as long as you’re not pointing at the 
ground. If you have enough energy (E = 0) you always escape.

13.22

1

2

mvesc =
GmmE

RE
or vesc =

p
2GmE/RE


