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@ Asked by Cody Phillips

How does physics apply to a knuckleball?

We all know that the spin and air resistance on a pitcher's curveball makes the ball

move but how does this apply to a knuckleball?

The first answer gives a

good physical picture. The
video was nice, and worth (G overestyMexiindsey
the Second anSwer. Variations in airflow along the differences in the smooth and rougher surfaces

of the ball are what cause the zigzag-like trajectory of a knuckleball. Basically,
you are forcing the air flow to create an asymmetric drag to make the ball move

up and down or side to side.

https://www.youtube.com/w &
atch?v=m57cimnJ7fc

| 66 Answered by Alex Ambrose

Here's a video | found that might be useful In helping you find your answer!

https://www.youtube.com/watch?v=m57cimn)7fc
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The Knuckleball Hop AERODYNAMICS: As the baseball slowly turns, its stitches rotate into the path

Physicists explain a knuckleball's hops and dips as of oncoming air and create increased air pressure near the “collision” point.
collisions between the air and a baseball’s stitches. As the ball keeps turning, the seam moves out of the airflow and pressure
They attribute the peculiar flight pattern to a combination decreases on that side.
of low speed and minimal spin. The pitch can DEFLECTING FORCE: Increased air Fluctuating air pressure
veer in almost any direction - even the best Peossurs inocks the ball off course produces sudden surges
pitchers generally can't predict the ; J l l ~inlateral force, which

break of a knuckleball; most batters i msmcmw" push the ball abruptly

generally can't hit one. A typical : disrupt off course.

trajectory is shown below. b Other pitches, like the

curveball, spin so rapidly

that the deflecting force

{ i ! B is constant, and the
THE GRIP & AR Y curve isgradual.

b A ”?FLO;..;

DELIVERY: Knuckleball
pitchers grip with the fingertips, not
the knuckles. They release the ball with a &
stiff wrist and a vigorous push with the fingers. The
ball has little spin (ideally, one revolution between the
mound and the plate), and low speed (about 60 miles an hour,
compared with an average of 80 or 90 for most pitches).

TIMING: A knuckleball takes more than six-tenths of a second to reach home plate -
about two-tenths of a second longer than most other pitches. This gives gravity more time to act:
a knuckleball's vertical drop may be as much as six feet, compared with an average of two feet for
other pitches. Batters tend to swing too high or too early to connect. Knuckleball and curveball
trajectories are compared below.

SFERt THE CATCH: Bob Uecker, former
6 major league catcher, described
4 the best technique for catching
a knuckleball: *Wait
2 - until the ball stops
0 rolling and then
pick it up.”

Megan Jaegerman/The New York Times ide 3-3



Who would win in a fight 100 trillion horses or the sun?

The sun is pretty big but 100 trillion horses could snuff the flame... do you think that's

yRESSHH-S Add Response ¢&3

* It does not look good for the horses. Just saying. The
sun 1s really big.

enough?

* But, serious point: you can answer weird questions
calmly and logically, and that’s fine.
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* Lions or horses
hardly matters

* There are technical
difficulties

« It 1s fine to apply
physics to ridiculous
situations. That’s how
you know they are
ridiculous.

© 2015 Pearson Education, Inc.

Answered by Max LaRocque
%) f aba

The average mass of a lion is 420 pounds, multiplying that by 100 trillion gets
you 4.2*10A16 pounds. The mass of the sun is 4.385*10A30 pounds. The mass
of the sun is 9.6*10745 times greater than the mass of the lions. The lions don't

stand a chance.

| 66 Answered by Gabriel Wood

I'm pretty sure the horses would lose in the event that they picked a fight with
the sun. Mass aside, the horses would be unable to reach the sun in the first
place. The sun is powered by nuclear fusion and burns at around 5778 Kelvin,
so it would be rather difficult for the horses to make their way to the sun

without being vaporized. Sadly, | think the sun wins this round.



PH105: “Sadly, | think the sun wins this round.”

CMB: Ever since the beginning of time, man has yearned
to destroy the sun

http://i.imgur.com/M3IcUSv.jpg
Slide 3-6
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question 1

Prelecture Concept Question 3.09

Part A

A car traveling due east at 20 m/s reverses its direction over a period of 10 seconds so that it is now traveling due west at 20 m/s.
What is the direction of the car’s average acceleration over this period?
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question 1

Prelecture Concept Question 3.09

Part A

A car traveling due east at 20 m/s reverses its direction over a period of 10 seconds so that it is now traveling due west at 20 m/s.
What is the direction of the car’s average acceleration over this period?

» Change in velocity AV 1s to the west

AV
 That makes d = At to the west as well

« Magnitude? Change is 40 m/s, over 10 s, so 4 m/s?
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Question 2

Prelecture Concept Question 3.05

Part A

Suppose that you toss a rock upward so that it rises and then falls back to the earth. If the acceleration due to gravity is 9.8

m/sec?, what is the rock’s acceleration at the instant that it reaches the top of its trajectory (where its velocity is momentarily zero)?
Assume that air resistance is negligible.
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Question 2

Prelecture Concept Question 3.05

Part A

Suppose that you toss a rock upward so that it rises and then falls back to the earth. If the acceleration due to gravity is 9.8

m/sec?, what is the rock’s acceleration at the instant that it reaches the top of its trajectory (where its velocity is momentarily zero)?
Assume that air resistance is negligible.

» Qravitational acceleration is constant — it is 9.8 m/s?
at all times.

* Confusing acceleration and velocity 1s an easy thing
to do — think carefully.
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Question 3

* Which figure could represent the
velocity versus time graph of a
motorcycle whose speed 1s
increasing?

© 2015 Pearson Education, Inc.
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v (m/s)
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Question 3

* Which figure could represent the 1
velocity versus time graph of a frto
motorcycle whose speed is -
increasing? .

> Speed is the absolute value of \

velocity ... magnitude of v increases
v(m/s)

» Flip all curves to be in upper right
quadrant and then compare : M
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* Covered sections 3.1-2, the basics of acceleration.
* Finish Ch. 3 today, on to Ch. 4 on Thursday
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Section 3.3: Projectile motion

Section Goals

* Define the motion of objects that are launched but not
self-propelled as projectile motion.

* Model the vertical trajectory of projectiles as objects
that are 1n free fall.

* Represent projectile motion graphically using motion
diagrams and motion graphs.
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Section 3.3: Projectile motion

* An object that 1s launched but not self-propelled 1s
called a projectile.

* Its motion 1s called projectile motion.
* The path the object follows 1s called its trajectory.
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Section 3.3: Projectile motion

«  Throw a ball straight up (with negligible air resistance)

- Al—l Ball's downward path offset for clarity—ball actually falls straight down.

(b) Film clip of ball’s motion; frames are taken at 30 frames per second
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(c) x(t) curve for ball
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Section 3.3: Projectile motion

* Consider x(7) and v(¢) curves:

* As the ball moves upward it slows down
* v and a are in opposite directions
* since v 1s up, a must be down

* As the ball moves down it speeds up
* v and a must be in the same direction
* since v 1s down, a 1s down

* the v(¢) curve is a straight line for the whole motion

* slope approximately the acceleration due to gravity.

* once the object 1s released, the rest of its motion 1s
determined by gravity alone (free fall).

© 2015 Pearson Education, Inc. Slide 3-17



Section 3.3: Projectile motion

(¢) x(t) curve for ball

x (m)

0.7

05F

03

0.1

(d)
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v, (m/s)

" Slowing down (|v,| decreases)  Speeding up (|v,| increases)
. =5 \

1 £ (s)
0.5

1 1 1 ]
0 0.1 0.2 0.3 0.4
v (t) curve for ball

Speeding up (|v,| increases)
< >

01 02 > 0.3 ' 0.5

_<Slowing down (|v,| decreases)
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Checkpoint 3.8

@ 3.8 Imagine throwing a ball downward so that it has an 1nitial
speed of 10 m/s.

What 1s its speed 1 s after you release 1t?
2 s after?
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.

Constant acceleration: gain/lose same speed each second

* launched downward, so it speeds up

* a~10m/s?, 1 second later: gain 10 m/s =» 20 m/s

* 2 seconds later: gain another 10 m/s =» 30 m/s

© 2015 Pearson Education, Inc. Slide 3-20



Section 3.3: Projectile motion

* What happens at the very top of the trajectory of a
ball launched upward?

* At the top, velocity changes from up to down,
which means that acceleration must be nonzero.

* At the very top, the instantaneous velocity is zero.
e Acceleration, however, 1s nonzero.

* Acceleration is always ~9.8m/s’

* Remember: velocity can be zero while
acceleration is not (and vice versa)
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Section 3.4: Motion diagrams

Section Goals

You will learn to

* Generalize the “frame sequence” diagram introduced
in Chapter 2 to a new visual representation called a
motion diagram.

* Represent and correlate the kinematic quantities,
position, displacement, velocity, and acceleration on
motion diagrams.
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Section 3.4: Motion diagrams

* Motion diagrams are pictorial representations of objects in motion:
* visualize the motion of an object described in a problem.

* they show an object’s x, v, and a at several equally spaced
instances (including at the start and end).

* 1t 1s basically a cartoon

* Below: a motion diagram for a bicycle with an 1nitial velocity of 8.0
m/s slowing down to a stop.

a

. G
.—1> @
' ' > X
t. =0 a, = ¢ tr=5.2s
x; =0 Xe = 20m

v,; = 8.0m/s Vo =

© 2015 Pearson Education, Inc. Slide 3-23



Section 3.4: Motion diagrams

Procedure: Analyzing motion using motion
diagrams

Solving motion problems: a diagram summarizing what you have &
what you want may all but solve the problem

1. Use dots to represent the moving object at equally spaced time
intervals. If the object moves at constant speed, the dots are
evenly spaced; if the object speeds up, the spacing between the
dots increases; if the object slows down, the spacing decreases.

2. Choose an x (position) axis that 1s convenient for the problem.
Most often this 1s an axis that (a) has its origin at the 1nitial or
final position of the object and (b) 1s oriented in the direction of
motion or acceleration.
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Section 3.4: Motion diagrams

Procedure: Analyzing motion using motion
diagrams (cont.)

3. Specity x & v at all relevant instants. Particularly,
specify

 the initial conditions - position and velocity at the beginning of the
time interval of interest

* the final conditions - position and velocity at the end of that time
interval.

* also note where v reverses direction or a changes.
* unknown parameters = question mark.

4. Indicate the acceleration of the object between all the
instants specified
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Section 3.4: Motion diagrams

Procedure: Analyzing motion using motion
diagrams (cont.)

5. With more than one object, draw separate diagrams
side by side, using one common x axis.

6. If the object reverses direction, separate the motion
diagram 1nto two parts, one for each direction
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Checkpoint 3.9

@ 3.9 Make a motion diagram for the following situation: A
seaside cliff rises 30 m above the ocean surface, and a person
standing at the edge of the cliff launches a rock vertically upward
at a speed of 15 m/s. After reaching the top of its trajectory, the
rock falls into the water.
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t1=9
X1=9
Vx,i—o

a, = —9.8 m/s?

ti =
Xi =
Vyi =+15m/s

cliff rises 30 m above the ocean
surface, and a person standing at
the edge of the cliff launches a
rock vertically upward at a
speed of 15 m/s. After reaching
the top of its trajectory, the rock
falls into the water.

© 2015 Pearson Education, Inc.

© 2015 Pearson Education, Inc.

a, = —9.8 m/s?
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Chapter 3: Self-Quiz #1

Two stones are released from rest at a certain height,
one 1 s after the other.

(a) Once the second stone 1s released, does the
difference 1n their speeds increase, decrease, or stay
the same?

(b) Does their separation increase, decrease, or stay the
same?

(c) Is the time interval between the instants at which
they hit the ground less than, equal to, or greater
than 1 s? (Use x(¢) curves to help you visualize this
problem.)

© 2015 Pearson Education, Inc. Slide 3-29



Chapter 3: Self-Quiz #1

Answer

(a) Both stones accelerate at about 10 m/s?, so the
speeds increase at the same rate, thus the
difference in the speeds remains the same.

(b) The separation increases because the speed of
the first stone is always greater. As a result, for a
given time interval the first stone always goes
farther. (Position goes as v times )

(c) the second stone always remains 1 s behind, this
1s how time works

© 2015 Pearson Education, Inc.
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stone 1

o
RO R e S

stone 2

stone 1

>t (s)
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Chapter 3: Self-Quiz #2

Which of the graphs in Figure 3.12 depict(s) an object
that starts from rest at the origin and then speeds up n
the positive x direction?

(a) (b) (c) (d)
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Chapter 3: Self-Quiz #2

Answer

Choice b 1s the correct answer because its 1nitial
position 1s zero and the slope is 1nitially zero but then
increasing, indicating that the object speeds up.

(a) (b) (c) (d)

X X X X
A A A A

> [ > | > > |

speeds in —x slows no acceleration
no start at origin no start at origin
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Chapter 3: Self-Quiz #3

Which of the graphs in Figure 3.13 depict(s) an object
that starts from a positive position with a positive x

component of velocity and accelerates in the negative x
direction?

(a) (b) (c) (d)
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Chapter 3: Self-Quiz #3

Answer

Choice d. Choice a does not have a positive initial
position. Choice b represents zero acceleration. Choice
c represents zero 1nitial velocity.

(a) (b) (c) (d)
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Chapter 3: Acceleration

Quantitative Tools
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Section 3.5: Motion with constant acceleration

Section Goals

You will learn to

* Represent motion with constant acceleration using
motion graphs and mathematics.

* Construct self-consistent position-versus-time,
velocity-versus-time, and acceleration-versus-time
graphs for specific motion situations.
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Section 3.5: Motion with constant acceleration

* We can write down the definition for the x
component of average acceleration:

a — Avx — vx,f _Ux,i
WAt -t

* Notice the similarity between this definition and the
definition of average velocity in chapter 2:

_Ax  x.—x
WALt -t

U

* Rates of change are our primary tools
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Section 3.5: Motion with constant acceleration

 Now let us consider the motion v
of an object with constant ‘
acceleration:

X

>

* For motion with constant
acceleration, a, ,, = a, and
v.(f) curve is a straight line.

" . A
* Rewriting our definition we = A—i
can get the x-component of
final velocity: >t

v .=V _.+a Ar (constant acceleration)
X, X,1 X
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Section 3.5: Motion with constant acceleration

 displacement is the area under the v (¢) curve. ©@

vx
A

 for an object in motion with constant
acceleration, the displacement (Ax = x;—x;) In
time interval (At = #,— ¢, 1s given by the area of
the shaded trapezoid

* Setting ¢, = 0, the object’s final position can be oot g
written as

area: v,0t = Ox

— 1, 42 :
X, =X, +V [ +5at; (constantacceleration) v
* we can determine the object’s final velocity

V. .=0V_.+at, (constantacceleration) v,,
x,f x,1 x f i
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Section 3.5: Motion with constant acceleration

* Since 1S an arbitrary instant in time in the object’s
motion, we can drop the subscript f and rewrite as

x(t)=x.+v_t+La s (constant acceleration)

v (f)=v_.+at (constant acceleration)

 This 1s basically 1t for 1D motion!

© 2015 Pearson Education, Inc. Slide 3-40



* This 1s easier with calculus, assuming constant a

dv

Cl:a

— v:Jadt:at—l—C

Notingv(z=0)=v,: v(t) =v; + at

e (Once more:
B dv
- dt

Cisx(¢=0) or x;

1
X — x:Jvdt:vit+§at2+C’

1 2
X(t) =Xi +vit + 5(1’(
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In terms of displacement

1 2
AX = x¢ — X4 = ViAt + 5(1 (At)
Sanity check: with no acceleration, distance = rate x time

seta =0:
Ax = vi At
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Section 3.5: Motion with constant acceleration

Table 3.1 Kinematics graphs for three basic types of motion

Motion diagram Position versus time Velocity versus time

Acceleration versus time

Atrest x Uy

: X = constant

2

Constant velocity

v, = constant

2
=

Constant acceleration

,@
A
I-

® -

© 2015 Pearson Education, Inc.
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Section 3.5: Motion with constant acceleration

Example 3.4 Collision or not?

You are bicycling at a steady 6.0 m/s when someone
suddenly walks into your path 2.5 m ahead. You
immediately apply the brakes, which slow you down at
6.0 m/s?. Do you stop in time to avoid a collision?
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Section 3.5: Motion with constant acceleration

Example 3.4 Collision or not? (cont.)

@ GETTING STARTED

In order to avoid a collision, you must come to a stop in
less than 2.5 m.

Need to calculate the distance traveled under the given
conditions. Is it more or less than 2.5 m?
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Section 3.5: Motion with constant acceleration

Example 3.4 Collision or not? (cont.)

@ DEVISE PLAN I have equations for displacement,
but I don’t know the time interval At.

— Av_x — Ux,f _vx,i

From the definition of acceleration: a_, =
ANt

At = (Ux,f o Ux,i)/ax
which contains no unknowns on the right side.
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Section 3.5: Motion with constant acceleration

Example 3.4 Collision or not? (cont.)

® EXECUTE PLAN Substituting the expression for
the time interval gives the x component of the
displacement necessary to stop:

1
Ax = vy 1At + §ax (At)2

2
A _ vx,f _vx,i 1 vx,f _vx,i _ Uyzc,f _Uyzc,i 1
X = Uxi Sd. — ( )
’ a a 2a
X X X

Slide 3-47
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Section 3.5: Motion with constant acceleration

Example 3.4 Collision or not? (cont.)

® EXECUTE PLAN
With +x along the direction of the motion
v,; = 16.0 m/s
v =0
a,.=—6.0 m/s’.
~ 0—(+6.0 m/s)’*

Ax = -—=4+3.0m
2(—6.0 m/s”)

more than the 2.5 m required. You will totally collide. v/
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Section 3.5: Motion with constant acceleration

* Notice: rearranging we can find the final velocity of
an object under constant acceleration over a certain
displacement (Ax):

V> =0> +2a Ax (constant acceleration)
x,f x,1 X

 advantage: don’t need to know time!

* In general: motion 1s overdetermined by x, v, a, t
—only need 3 of 4
— can eliminate 1 variable
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Checkpoint 3.10

@ 3.10 Determine the velocity of the stone dropped from the top
of the Empire State Building in Example 3.2 just before the stone
hits the ground.

(The empire state building 1s ~300m tall)
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.

2
X,

v, =V’ +2a Ax (constant acceleration)

initial velocity 1s zero
displacement ~ 300 m

acceleration ~ 10 m/s?

Vet = \/vi,i +2a,Ax = /0 + 2(10 m/s2)(300 m) ~ 80m/s
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Section 3.6: Free-fall equations

Section Goals

* Model free-fall motion using the concept of gravity
and the definitions of velocity and acceleration.

* Manipulate the equations for free-fall into a form that
allows the prediction of the future motion of an object
from 1ts present state of motion.
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Section 3.6: Free-fall equations

* The magnitude of the acceleration due to gravity is
designated by the letter g:

8= ‘afree fall

* Near Earth’s surface g = 9.8 m/s?.

* The direction of the acceleration is downward, and if
we chose a positive axis pointing upward, a. = —g.

 If an object 1s dropped from a certain height with zero
velocity along an upward-pointing x-axis, then

_ 1 42
xf_xi 2gtf
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Section 3.6: Free-fall equations

Example 3.5 Dropping the ball

Suppose a ball 1s dropped from height 72 =20 m above
the ground. How long does 1t take to hit the ground, and
what 1s its velocity just before 1t hits?
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Section 3.6: Free-fall equations

Example 3.5 Dropping a ball (cont.)

/

© GETTING STARTED t =0
x axis that points upward Xi =071
Vgl =

?

origin at the initial position of the ball

assumptions:
released from rest (v ; = 0 at £, = 0) a,=—g

ignore air resistance

initial conditions are

fe=
£=0,x=0,v,,=0 =0
vX,f=‘

© 2015 Pearson Education, Inc.
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Section 3.6: Free-fall equations

Example 3.5 Dropping a ball (cont.)

N

@ GETTING STARTED t;=0

final position x; at instant #; 1s a distance VX:‘ —a | -

h below the initial position ! .

just before impact at instant #, the final .

conditions are a,=—g la’
[ ]

=2, x=-h,v =7

acceleration is negative, a, = —g. te=?
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Section 3.6: Free-fall equations

Example 3.5 Dropping a ball (cont.)

@ DEVISE PLAN
Acceleration 1s constant, so our equations are valid.

Gives us two equations & two unknowns: #-and v ¢

1 2
X(t) =Xy +vit+ 5(1’(

Ve = Vi + at
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Section 3.6: Free-fall equations

Example 3.5 Dropping a ball (cont.)

® EXECUTE PLAN Substituting the
initial and final conditions into x(¢):

—h=0+0—-1gr=—1Lgt

f

and so

© 2015 Pearson Education, Inc.

X
t;=0

Xxi=0 7
Vy,i =0

£y =9
Xf =-20m +
vx,fz?
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Section 3.6: Free-fall equations

Example 3.5 Dropping a ball (cont.)

© EXECUTE PLAN Substituting # =20 m A
and ¢ = 9.8 m/s? into v(¢): :f% :8 L,
vx,-: =0 :
Al‘:l‘f—t.z\/z—0=\/2(2om2= 40s°=2.0s .
1 g 9.8 m/s °
a=-q | . l&’
tp=2?
=—20m{ ¢
V:fe P lVf
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Section 3.6: Free-fall equations

Example 3.5 Dropping a ball (cont.)

© EXECUTE PLAN t=0]
Because the ball starts from rest: Vyi =0

Ver= 0 — gty =—gt; = —9.8 m/s?)(2.0 s)

=-20m/s. vV dy = —g
tp=9
Xg = —-20m +
Vx,f= ?

© 2015 Pearson Education, Inc.
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Section 3.6: Free-fall equations

Example 3.5 Dropping a ball (cont.)

O EVALUATE RESULT
Time 1s reasonable based on everyday experience
Final velocity Ax; =—20 m/s also makes sense:
* negative because 1t points in the negative x direction

* 1f the ball was at a constant speed of 20 m/s, 1t would cover
the 20-m distance in 1 s. It moves at that speed only at the
end of the drop, so 1t takes longer to fall.

* Know initial v, ; and a, so could also have used

0% .= v’ +2a Ax (constant acceleration)
X, X,1 X
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Section 3.7: Inclined planes

Section Goals

You will learn to

* Identify that one-dimensional motion along an incline
plane can be related to free-fall motion along a
non-vertical direction.

* Establish that purely horizontal and purely vertical
motion are the special cases of motion along an
incline plane.
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Section 3.7: Inclined planes

* Galileo used inclined planes to study
motion of objects that are accelerated due
to gravity:

 He found that when a ball rolls down |
an incline starting at rest, the ratio of
the distance traveled to the square of
the amount of time needed to travel
that distance 1s constant:

XX X
2 2 2
ZLl ZL2 t3

* Using this and setting x, =0 and ¢, = 0
we can show that this ratio is

proportional to a: (from)
x 1
t=1q, x(t) =xi +vit+ ;at’
f
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Section 3.7: Inclined planes

* (@alileo observed that o

 For each value of the
angle 0, a, along the
incline 1s a constant.

* a_along the incline
Increases as @ increases.

* Experimentally we can
determine that the x
component of the
acceleration along the J
incline obey the
relationship

a,=+gsinb

© 2015 Pearson Education, Inc.

(b) Component of cart’s velocity along incline as function of time

v, (mfs) -

0 (s)

1 I I 1 1 1 L |t
0 0.1 02 03 04 05 06 07 08

(¢) Component of acceleration along incline as function of angle
of incline

a, (m/s%)

12
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Inclined planes

* establishes gravity 1s vertical, constant acceleration

* 1t 1s a vector, and only the vertical component matters

* for inclined plane, the component along the plane 1s
a,=+gsin 0

* (but sign depends on whether you go up or down the
incline)
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Section 3.8: Instantaneous acceleration

Section Goals

You will learn to

* Generalize the mathematical definition of the average
acceleration of a moving object to instantaneous
acceleration by use of a limiting process.

* Represent motion with continuous changes in
velocity using motion graphs and mathematics.

* Relate the concept of a tangent line on a
velocity-versus-time graph with the instantaneous
acceleration.
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Section 3.8: Instantaneous acceleration

* What if acceleration 1s not o)
constant? Use the calculus we did. v, (m)9)
60 - 5
* The figure shows the constant | o | 9,
. acce eraz.xon ,, Q%
v.(t) curve for a motion where wof 't X L
the acceleration is not L ;
20 At
constant.
* The instantaneous acceleration Y T L
a, 1s the slope of the tangent of
the v (¢) curve at time t: (b)
v, (m/s)
a = dvx b tangent to v, (f) gurve atP
Yoodt
40 -
* Or
P
dv. d(dc) d’x or
a = — =
“odt dt\ dt )] df? . I T Y P
0 10 20 30 40
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Section 3.8: Instantaneous acceleration

* To find the change in velocity during the time interval (A7), we can
use the area under the a (#) curve 1n the figure.

* Although, acceleration is not constant, we can divide motion into
small intervals of Az in which it is constant.

* In the limit At — 0, we can find

t
£
Av = |"a ()dt
X ;X
1
(a) To find change in velocity over time  (b) Velocity change over entire interval is () As we make 0t smaller, approximation

interval, we approximate acceleration a, sum of velocity changes over steps. a, improves and sum of rectangular
curve by steps of constant acceleration. A A

areas approaches area under curve.

Velocity change during
.-step 4 equals a,(t,)5¢
a (area of rectangle).

During this step, velocity

g .- Area under curve
~* changes by a,(t,)ot.

1S Ux,f - ,Ux)i.

|
|
|
at) F—+-——-
|
|
|
|
|
|
|
2

~

—
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Section 3.8: Instantaneous acceleration

* Once we know the @
velocity, we can use the ¥ dupcement 1.
same approach to el
obtain displacement: o
L i E i
Ax=| v (t)dt . B
Ji X f St t
(b)
| Area under curve i-s.‘x,r g o
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Checkpoint 3.14

@ 3.14 Take the first and second time derivatives of x;1n Eq. 3.9.
What do you notice?

X, =x+v_t. +1at’ (constant acceleration)
1 x,1 f 2 7x f

dxr = Vx.i T axt
dtf — Vx,1 x U
d2Xf
— ax

2
dt?2
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Chapter 3: Summary

Concepts: Accelerated motion

* If the velocity of an object 1s changing, the object 1s
accelerating. The x component of an object’s
average acceleration 1s the change 1n the x
component of 1ts velocity divided by the time interval
during which this change takes place.

* The x component of the object’s instantaneous
acceleration 1s the x component of its acceleration at
any given instant.

* A motion diagram shows the positions of a moving
object at equally spaced time intervals.
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Cha

pter 3: Summary

Quantitative Tools: Accelerated motion

© 2015 Pears

The x component of the average acceleration is
AU vx,f o Ux,i

a X
AL t—t
The x component of the instantaneous acceleration i1s
_dv. d ‘x
Y odt dr
The x component of the change in velocity over a time interval is

a

given by .
Av = |"a (t)dt

The x component of the displacement over a time interval 1s given

by Ax=["v (1)
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Chapter 3: Summary

Concepts: Motion with constant acceleration

* [f an object has constant acceleration, the v () curve
1s a straight line that has a nonzero slope and the a (?)
curve 1s a horizontal line.
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Chapter 3: Summary

Quantitative Tools: Motion with constant
acceleration

* If an object moves 1n the x direction with constant acceleration
a, starting at ¢ = 0, with initial velocity v, ; at initial position x;,
its x coordinate at any instant 7 is given by

x(t)=x+0v t+3 at’

* The x component of its instantaneous velocity 1s given by

v()=v +tat

* And the x component of its final velocity is given by

v =0 +2a Ax
x,f X,1 X
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Chapter 3: Summary

Concepts: Free fall and projectile motion

* An object subject only to gravity 1s in free fall. All
objects 1n free fall near the surface of Earth have the
same acceleration, which 1s directed downward. We
call this acceleration the acceleration due to gravity
and denote 1ts magnitude by the letter g.

* An object that 1s launched but not self-propelled is 1n
projectile motion. Once 1t 1s launched, it is in free
fall. The 1t follows 1s called its trajectory.
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Chapter 3: Summary

Quantitative Tools: Free fall and projectile
motion

* The magnitude g of the downward acceleration due to
gravity 1s

=9.8 m/s” (near Earth's surface)

g = ‘afree fall
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Chapter 3: Summary

Concepts: Motion along an inclined plane

* An object moving up or down an inclined plane on
which friction 1s negligible has a constant
acceleration that 1s directed parallel to the surface of
the plane and points downward along the surface.
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Chapter 3: Summary

Quantitative Tools: Free fall and projectile
motion

* When friction 1s negligible, the x component of
acceleration a, for an object moving on an inclined
plane that rises at an angle 6 above the horizontal 1s

a.,=+gsinf
when the x axis 1s directed downward along the
plane.
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